Answer:
2.4
⋅
10
24
Explanation:
All that you need to know here is that in order for a given sample of water to contain exactly 1 mole of water, it must contain 6.022
⋅
10
23 molecules of water.
This is known as Avogadro's constant and essentially acts as the definition of a mole. If you have 6.022
⋅
10
23 molecules of water, then you can say for a fact that you have 1 mole of water.
Beryllium, magnesium, strontium, barium, or radium. Hope this helped :))
due to there reactive rate?
Answer:
Dalton expressed his assumption in A Modern Model of Chemical Theory that atoms of various elements should be uniformly differentiated, based on their differing atomic weights. In doing so, he became the first scientist to explain atom behavior as regards weight measurement.
Explanation:
Answer:
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)
Explanation:
Let's consider the molecular equation between aqueous copper(II) chloride and aqueous sodium phosphate.
3 CuCl₂(aq) + 2 Na₃PO₄(aq) ⇒ 6 NaCl(aq) + Cu₃(PO₄)₂(s)
The complete ionic equation includes all the ions and insoluble species.
3 Cu²⁺(aq) + 6 Cl⁻(aq) + 6 Na⁺(aq) + 2 PO₄³⁻(aq) ⇒ 6 Na⁺(aq) + 6 Cl⁻(aq) + Cu₃(PO₄)₂(s)
The net ionic equation includes only the ions that participate in the reaction (not spectator ions) and insoluble species.
3 Cu²⁺(aq) + 2 PO₄³⁻(aq) ⇒ Cu₃(PO₄)₂(s)