1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth

due to Venus, Jupiter, and Saturn, assuming all four planets are in a line, as shown in the figure. The masses are MV=0.815ME, MJ=318ME, MSat=95.1ME, and the mean distances of the four planets from the Sun are 108, 150, 778, and 1430 million km.

Physics
2 answers:
mylen [45]3 years ago
4 0

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

Dmitry [639]3 years ago
3 0

The net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Further Explanation:

The net force acting on a body is the vector sum of all the forces acting on the body.

Given:

Venus mass is 0.815M_E.

Jupiter mass is 318 M_E.

Saturn mass is 95.1M_E.

Distance between Venus and Sun is 108\text{ million}\text{ km}.

Distance between Earth and Sun is 150\text{ million km}.

Distance between Jupiter and Sun is 778\text{ million km}.

Distance between Saturn and Sun is 1430\text{ million km}.

Concept:

The expression for the Gravitational force of attraction is:

F = \frac{{G{M_1}{M_2}}}{{{R^2}}}                                …… (1)

The value of the gravitational constant is 6.67 \times {10^{ - 11}}{\text{ }}\frac{{{\text{Nm}}}}{{{\text{k}}{{\text{g}}^2}}}.

The mass of the Earth is 5.97 \times {10^{24}}{\text{ kg}}.

The expression for the distance between the Earth from the Venus is:

{R_{{\text{EV}}}} = {R_{{\text{SE}}}} - {R_{{\text{SV}}}}

Substitute 108 for {R_{{\text{SV}}}} and 150 for {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{EV}}}}&=\left({150 - 108}\right){\text{ million km}}\\&=42{\text{ million km}}\\&=42\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Jupiter is:

{R_{{\text{EJ}}}} = {R_{{\text{SJ}}}} - {R_{{\text{SE}}}}

Substitute values of {R_{{\text{SJ}}}} and {R_{{\text{SE}}}}.

\begin{aligned}{R_{{\text{EJ}}}}&=({778 - 150})\\&=628\text{ million km}\\&=628\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Saturn is:

{R_{{\text{ESa}}}} = {R_{{\text{SSa}}}} - {R_{{\text{SE}}}}

Substitute {R_{{\text{SSa}}}} and {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{ESa}}}}&=({1430 - 150}){\text{ million km}}\\&=1280{\text{ million km}}\\&=1280\times {10^6}{\text{ km}}\\\end{aligned}

Substitute {F_1} for F, 42 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

{F_1} =\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_1}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^9}}} )}^2}}}\\{F_1}&= 0.1098 \times {10^{19}}{\text{ N}}\end{aligned}

Substitute {F_2} for F, 628 \times {10^6}{\text{ km}} for R and values of {M_1}, {M_2}, M_E and G in equation (1).

{F_2}=\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_2}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})({318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^9}})}^2}}}\\{F_2}&=0.1916 \times {10^{19}}{\text{ N}}\\\end{aligned}

Substitute {F_3} for F, 1280 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

\begin{aligned} {F_3}&= \frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {95.1 \times 5.97 \times {{10}^{24}}})}}{{{{( {1280 \times {{10}^9{\,m}}} )}^2}}}\\ {F_3}&= 0.1379 \times {10^{18}}{\text{ N}}\end{aligned}

The force acting on the left side is taken negative and force acting on the left side is taken positive as shown in the redrawn figure.

The expression net force acting on the Earth is:

\fbox{\begin\\F = - {F_1} + {F_2} + {F_3}\end{minispace}}

Here, F is the net Gravitational force acting on the Earth.

Substitute the values in the above equation.

\begin{aligned} F&=-0.1098 \times {10^{19}}+0.1916 \times {10^{19}}+0.1379 \times {10^{18}}\\&= 9.559 \times {10^{17}}{\text{ N}} \\ \end{aligned}

Therefore, the net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Learn more:

1. Motion of ball under gravity brainly.com/question/10934170

2. The motion of a body under friction brainly.com/question/7031524

3. Net force on a body brainly.com/question/4033012

Answer Details:

Grade: College

Subject: Physics

Chapter: Gravitation

Keywords:

Every few hundred years, planets, line up, same side, Sun, the Venus, Earth, Jupiter and Saturn, masses, MV=0.815ME, MJ=318 ME and MSat=95.1 ME, mean distance, four planets, 108, 150, 778, and 1430 million km, 9.559x 10^17 N.

You might be interested in
Calculate the speed of a gamma ray with a frequency of 3.0 x 10^19 Hz and a wavelength of 1.0 x 10^-11 m.
Ulleksa [173]

Answer:

Speed of gamma rays = 3 x 10⁸ m/s

Explanation:

Given:

Frequency of gamma ray = 3 x 10¹⁹ Hz

Wavelength of gamma rays = 1 x 10⁻¹¹ meter

Find:

Speed of gamma rays

Computation:

Velocity = Frequency x wavelength

Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays

Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]

Speed of gamma rays = 3 x [10¹⁹⁻¹¹]

Speed of gamma rays = 3 x [10⁸]

Speed of gamma rays = 3 x 10⁸ m/s

6 0
3 years ago
A balloon of mass M is floating motionless in the air. A person of mass less than M is on a rope ladder hanging from the balloon
Tasya [4]

Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.

Given that,

Mass of gallon is M

Let man mass be m

Velocity of man is v

Let velocity if ballot be Vb

When the person begin to move we have

Conservation of momentum

mv + MVb=0

MVb=-mv

Vb= -(m/M) v

Given that the mass of man is less than mass of balloon. i.e. m<M

So, if m<M, then, m/M <1

Therefore, .

Vb= -(m/M) v

Vb< -v

This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction

So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,

The answer is C

Down with a speed less than v

6 0
3 years ago
Read 2 more answers
If the same fish is attached to the end of the unstretched spring and then allowed to fall from rest, through what maximum dista
andrew11 [14]

Answer:

x=2d

Explanation:

initial stretch in the spring is d

so using Hook's law

at equilibrium position

k×d=mg

where k= spring constant

m= mass of fish

g= acceleration due to gravity.

d=mg/k ................ (1)

in second case  by energy conservation

1/2 kx^2=mgx

x=2mg/k

using equation 1

x=2d

3 0
3 years ago
A person walks first at a constant speed of 5.50 m/s along a straight line from point A to point B and then back along the line
Sav [38]

Answer:

4.25 m/s

Explanation:

They walked the first distance at 5.50 m/s, then the same distance at 3 m/s.

Since the distances are equal, the average speed is simply the average of 5.50 and 3.

(5.50 + 3) / 2 = 4.25

Her average speed over the entire trip is 4.25 m/s.

8 0
3 years ago
Why does a light bike have more kinetic energy
FrozenT [24]
Because it doesn't use energy it uses mechanical and kinetic
3 0
3 years ago
Other questions:
  • Trying to manage stress during which phase of the ABCs of Stress generally provides the most favorable results?
    10·1 answer
  • The space shuttle fleet was designed with two booster stages. If the second stage provides a thrust of 73 ​kilo-newtons and the
    11·1 answer
  • A 1200-kg SUV is moving alone a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20.0 m/s, has its center
    12·1 answer
  • Under which of the following conditions is Lactic acid fermentation most likely occur?
    15·1 answer
  • When waves of equal amplitude from two sources are out of phase when they interact it is called?
    12·1 answer
  • two friends are talking to another person across the building the other person can hear them but not see them why is this?
    5·1 answer
  • An unnamed professor is walking to class when an office chair (travelling in the same direction) collides with them. The profess
    11·1 answer
  • Which factors affect the gravitational force between objects? Check all that apply.
    9·2 answers
  • 100 g of water at 25 °C is poured into an insulating cup. 50 g of ice at 0 °C is added to the
    6·1 answer
  • I need help on this question!! Please answer asap!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!