1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth

due to Venus, Jupiter, and Saturn, assuming all four planets are in a line, as shown in the figure. The masses are MV=0.815ME, MJ=318ME, MSat=95.1ME, and the mean distances of the four planets from the Sun are 108, 150, 778, and 1430 million km.

Physics
2 answers:
mylen [45]3 years ago
4 0

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

Dmitry [639]3 years ago
3 0

The net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Further Explanation:

The net force acting on a body is the vector sum of all the forces acting on the body.

Given:

Venus mass is 0.815M_E.

Jupiter mass is 318 M_E.

Saturn mass is 95.1M_E.

Distance between Venus and Sun is 108\text{ million}\text{ km}.

Distance between Earth and Sun is 150\text{ million km}.

Distance between Jupiter and Sun is 778\text{ million km}.

Distance between Saturn and Sun is 1430\text{ million km}.

Concept:

The expression for the Gravitational force of attraction is:

F = \frac{{G{M_1}{M_2}}}{{{R^2}}}                                …… (1)

The value of the gravitational constant is 6.67 \times {10^{ - 11}}{\text{ }}\frac{{{\text{Nm}}}}{{{\text{k}}{{\text{g}}^2}}}.

The mass of the Earth is 5.97 \times {10^{24}}{\text{ kg}}.

The expression for the distance between the Earth from the Venus is:

{R_{{\text{EV}}}} = {R_{{\text{SE}}}} - {R_{{\text{SV}}}}

Substitute 108 for {R_{{\text{SV}}}} and 150 for {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{EV}}}}&=\left({150 - 108}\right){\text{ million km}}\\&=42{\text{ million km}}\\&=42\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Jupiter is:

{R_{{\text{EJ}}}} = {R_{{\text{SJ}}}} - {R_{{\text{SE}}}}

Substitute values of {R_{{\text{SJ}}}} and {R_{{\text{SE}}}}.

\begin{aligned}{R_{{\text{EJ}}}}&=({778 - 150})\\&=628\text{ million km}\\&=628\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Saturn is:

{R_{{\text{ESa}}}} = {R_{{\text{SSa}}}} - {R_{{\text{SE}}}}

Substitute {R_{{\text{SSa}}}} and {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{ESa}}}}&=({1430 - 150}){\text{ million km}}\\&=1280{\text{ million km}}\\&=1280\times {10^6}{\text{ km}}\\\end{aligned}

Substitute {F_1} for F, 42 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

{F_1} =\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_1}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^9}}} )}^2}}}\\{F_1}&= 0.1098 \times {10^{19}}{\text{ N}}\end{aligned}

Substitute {F_2} for F, 628 \times {10^6}{\text{ km}} for R and values of {M_1}, {M_2}, M_E and G in equation (1).

{F_2}=\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_2}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})({318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^9}})}^2}}}\\{F_2}&=0.1916 \times {10^{19}}{\text{ N}}\\\end{aligned}

Substitute {F_3} for F, 1280 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

\begin{aligned} {F_3}&= \frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {95.1 \times 5.97 \times {{10}^{24}}})}}{{{{( {1280 \times {{10}^9{\,m}}} )}^2}}}\\ {F_3}&= 0.1379 \times {10^{18}}{\text{ N}}\end{aligned}

The force acting on the left side is taken negative and force acting on the left side is taken positive as shown in the redrawn figure.

The expression net force acting on the Earth is:

\fbox{\begin\\F = - {F_1} + {F_2} + {F_3}\end{minispace}}

Here, F is the net Gravitational force acting on the Earth.

Substitute the values in the above equation.

\begin{aligned} F&=-0.1098 \times {10^{19}}+0.1916 \times {10^{19}}+0.1379 \times {10^{18}}\\&= 9.559 \times {10^{17}}{\text{ N}} \\ \end{aligned}

Therefore, the net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Learn more:

1. Motion of ball under gravity brainly.com/question/10934170

2. The motion of a body under friction brainly.com/question/7031524

3. Net force on a body brainly.com/question/4033012

Answer Details:

Grade: College

Subject: Physics

Chapter: Gravitation

Keywords:

Every few hundred years, planets, line up, same side, Sun, the Venus, Earth, Jupiter and Saturn, masses, MV=0.815ME, MJ=318 ME and MSat=95.1 ME, mean distance, four planets, 108, 150, 778, and 1430 million km, 9.559x 10^17 N.

You might be interested in
a diver of mass 101 kg jumps upward off a diving board into water. Diving board is 6m above water. Diver has a speed of 1.2m/s.
8090 [49]
When the diver reaches maximum height, the upward velocity will be zero.

We shall use the formula
v^2 = u^2 - 2gh
where 
v = 0 (velocity at maximum height)
u = 1.2 m/s, intial upward velocity
g = -9.8 m/s^2, gravitational acceleration (downward)
h = maximum height attained above the diving board.

Therefore
0 = 1.2^2 - 2*9.8*h
h = 1.2^2/(2*9.8) = 0.0735 m

Answer: 0.074 m (nearest thousandth)
5 0
3 years ago
How to reduce the energy loss from the study lamp?​
AnnZ [28]

Stop using it all the time for some useless things.

7 0
3 years ago
PLEASE HELP ME
Minchanka [31]

Answer:

4 seconds

Explanation:

bullet flies 200m/s. thus 800m/200m=4sec

7 0
3 years ago
Imagine you are holding an apple. Does this apple have energy?how do you know?
patriot [66]

The apple in my hand has three different forms of energy
that I can think of.

1). Thermal energy.  I know that the apple's temperature is
not absolute zero, because it is not freezing my hand off. 
Therefore it holds some heat energy.

2).  Chemical energy.  From previous experience, I know that
if I eat the apple, it gives me a boost and keeps the doctor away,
since my  body is able to metabolize it, and extract nutrition from
its chemical energy.

3).  Potential energy.  Also from previous experience, I realize
that when I picked up the apple, I exerted force on it opposite to
the force of gravity.  By doing work on it, I endowed it with increased
gravitational potential energy, which would immediately be obvious
if I dropped it to the ground, where it would either smash or dig a
little crater in the grass.
8 0
3 years ago
Read 2 more answers
A couple of ice cubes float in a glass of water. Will the water level in the glass
taurus [48]

Answer:

Yes, the water level in the glass will decrease as the icecubes melt, this is a due to water displacement.

6 0
3 years ago
Other questions:
  • For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
    13·1 answer
  • Which planets are mostly "made of" atmosphere?
    15·2 answers
  • Which type(s) of electromagnetic radiation emitted by the Sun are absorbed by Earth’s atmosphere and do not reach Earth’s surfac
    11·1 answer
  • In an arcade game, a 0.126 kg disk is shot across a frictionless horizontal surface by compressing it against a spring and relea
    5·1 answer
  • An aluminum rod of length 3.3 m and crosssectional area 3.8 cm2 is inserted vertically into a thermally insulated vessel contain
    5·1 answer
  • Two asteroids are 100,000 m apart. One has a mass of 3.5 x 106 kg. If the
    14·2 answers
  • While practicing the trumpet you notice that every time you play a particular note a window in the room rattles. How can you exp
    8·1 answer
  • Can someone help me with this?
    10·1 answer
  • Hiii! Question for those of you who know anything about crystals/stones/rocks.
    10·2 answers
  • What is the launch speed of a projectile that rises vertically above the Earth to an altitude equal to 14 REarth before coming t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!