1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
14

Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth

due to Venus, Jupiter, and Saturn, assuming all four planets are in a line, as shown in the figure. The masses are MV=0.815ME, MJ=318ME, MSat=95.1ME, and the mean distances of the four planets from the Sun are 108, 150, 778, and 1430 million km.

Physics
2 answers:
mylen [45]3 years ago
4 0

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

Dmitry [639]3 years ago
3 0

The net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Further Explanation:

The net force acting on a body is the vector sum of all the forces acting on the body.

Given:

Venus mass is 0.815M_E.

Jupiter mass is 318 M_E.

Saturn mass is 95.1M_E.

Distance between Venus and Sun is 108\text{ million}\text{ km}.

Distance between Earth and Sun is 150\text{ million km}.

Distance between Jupiter and Sun is 778\text{ million km}.

Distance between Saturn and Sun is 1430\text{ million km}.

Concept:

The expression for the Gravitational force of attraction is:

F = \frac{{G{M_1}{M_2}}}{{{R^2}}}                                …… (1)

The value of the gravitational constant is 6.67 \times {10^{ - 11}}{\text{ }}\frac{{{\text{Nm}}}}{{{\text{k}}{{\text{g}}^2}}}.

The mass of the Earth is 5.97 \times {10^{24}}{\text{ kg}}.

The expression for the distance between the Earth from the Venus is:

{R_{{\text{EV}}}} = {R_{{\text{SE}}}} - {R_{{\text{SV}}}}

Substitute 108 for {R_{{\text{SV}}}} and 150 for {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{EV}}}}&=\left({150 - 108}\right){\text{ million km}}\\&=42{\text{ million km}}\\&=42\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Jupiter is:

{R_{{\text{EJ}}}} = {R_{{\text{SJ}}}} - {R_{{\text{SE}}}}

Substitute values of {R_{{\text{SJ}}}} and {R_{{\text{SE}}}}.

\begin{aligned}{R_{{\text{EJ}}}}&=({778 - 150})\\&=628\text{ million km}\\&=628\times{10^6}{\text{ km}}\\\end{aligned}

The expression for the distance between the Earth from the Saturn is:

{R_{{\text{ESa}}}} = {R_{{\text{SSa}}}} - {R_{{\text{SE}}}}

Substitute {R_{{\text{SSa}}}} and {R_{{\text{SE}}}} in the above equation.

\begin{aligned}{R_{{\text{ESa}}}}&=({1430 - 150}){\text{ million km}}\\&=1280{\text{ million km}}\\&=1280\times {10^6}{\text{ km}}\\\end{aligned}

Substitute {F_1} for F, 42 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

{F_1} =\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_1}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {0.815 \times 5.97 \times {{10}^{24}}})}}{{{{( {42 \times {{10}^9}}} )}^2}}}\\{F_1}&= 0.1098 \times {10^{19}}{\text{ N}}\end{aligned}

Substitute {F_2} for F, 628 \times {10^6}{\text{ km}} for R and values of {M_1}, {M_2}, M_E and G in equation (1).

{F_2}=\dfrac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^6{\,km}}})}^2}}}

\begin{aligned} {F_2}&=\frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})({318 \times 5.97 \times {{10}^{24}}})}}{{{{( {628 \times {{10}^9}})}^2}}}\\{F_2}&=0.1916 \times {10^{19}}{\text{ N}}\\\end{aligned}

Substitute {F_3} for F, 1280 \times {10^6}{\text{ km}} for R and the values of {M_1}, {M_2}, M_E and G in equation (1).

\begin{aligned} {F_3}&= \frac{{( {6.67 \times {{10}^{ - 11}}})( {5.97 \times {{10}^{24}}})( {95.1 \times 5.97 \times {{10}^{24}}})}}{{{{( {1280 \times {{10}^9{\,m}}} )}^2}}}\\ {F_3}&= 0.1379 \times {10^{18}}{\text{ N}}\end{aligned}

The force acting on the left side is taken negative and force acting on the left side is taken positive as shown in the redrawn figure.

The expression net force acting on the Earth is:

\fbox{\begin\\F = - {F_1} + {F_2} + {F_3}\end{minispace}}

Here, F is the net Gravitational force acting on the Earth.

Substitute the values in the above equation.

\begin{aligned} F&=-0.1098 \times {10^{19}}+0.1916 \times {10^{19}}+0.1379 \times {10^{18}}\\&= 9.559 \times {10^{17}}{\text{ N}} \\ \end{aligned}

Therefore, the net Gravitational force acting on the Earth \fbox{\begin\\9.559 \times {10^{17}}{\text{ N}}\end{minispace}}.

Learn more:

1. Motion of ball under gravity brainly.com/question/10934170

2. The motion of a body under friction brainly.com/question/7031524

3. Net force on a body brainly.com/question/4033012

Answer Details:

Grade: College

Subject: Physics

Chapter: Gravitation

Keywords:

Every few hundred years, planets, line up, same side, Sun, the Venus, Earth, Jupiter and Saturn, masses, MV=0.815ME, MJ=318 ME and MSat=95.1 ME, mean distance, four planets, 108, 150, 778, and 1430 million km, 9.559x 10^17 N.

You might be interested in
At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
Ksju [112]

Answer:

By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.

here weight of the child =21kgx9.8m/s2 = 205.8N

the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.

torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.

net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.

b) Ta = 2.5x151 = 377.5N-m

Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.

c)Ta = 2x151 = 302N-m

Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.

5 0
3 years ago
The curvature of the helix r​(t)equals(a cosine t )iplus(a sine t )jplusbt k​ (a,bgreater than or equals​0) is kappaequalsStartF
4vir4ik [10]

Answer:

\kappa = \frac{1}{2 b}

Explanation:

The equation for kappa ( κ) is

\kappa = \frac{a}{a^2 + b^2}

we can find the maximum of kappa for a given value of b using derivation.

As b is fixed, we can use kappa as a function of a

\kappa (a) = \frac{a}{a^2 + b^2}

Now, the conditions to find a maximum at a_0 are:

\frac{d \kappa(a)}{da} \left | _{a=a_0} = 0

\frac{d^2\kappa(a)}{da^2}  \left | _{a=a_0} < 0

Taking the first derivative:

\frac{d}{da} \kappa = \frac{d}{da}  (\frac{a}{a^2 + b^2})

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} \frac{d}{da}(a)+ a * \frac{d}{da}  (\frac{1}{a^2 + b^2} )

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 + a * (-1)  (\frac{1}{(a^2 + b^2)^2} ) \frac{d}{da}  (a^2+b^2)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 - a  (\frac{1}{(a^2 + b^2)^2} ) (2* a)

\frac{d}{da} \kappa = \frac{1}{a^2 + b^2} * 1 -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{a^2+b^2}{(a^2 + b^2)^2}  -  2 a^2  (\frac{1}{(a^2 + b^2)^2} )

\frac{d}{da} \kappa = \frac{1}{(a^2 + b^2)^2} (a^2+b^2 -  2 a^2)

\frac{d}{da} \kappa = \frac{b^2 -  a^2}{(a^2 + b^2)^2}

This clearly will be zero when

a^2 = b^2

as both are greater (or equal) than zero, this implies

a=b

The second derivative is

\frac{d^2}{da^2} \kappa = \frac{d}{da} (\frac{b^2 -  a^2}{(a^2 + b^2)^2} )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} \frac{d}{da} ( b^2 -  a^2 ) + (b^2 -  a^2) \frac{d}{da} ( \frac{1}{(a^2 + b^2)^2}  )

\frac{d^2}{da^2} \kappa = \frac{1}{(a^2 + b^2)^2} ( -2  a ) + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

\frac{d^2}{da^2} \kappa = \frac{-2  a}{(a^2 + b^2)^2} + (b^2 -  a^2) (-2) ( \frac{1}{(a^2 + b^2)^3}  ) (2a)

We dcan skip solving the equation noting that, if a=b, then

b^2 -  a^2 = 0

at this point, this give us only the first term

\frac{d^2}{da^2} \kappa = \frac{- 2  a}{(a^2 + a^2)^2}

if a is greater than zero, this means that the second derivative is negative, and the point is a minimum

the value of kappa is

\kappa = \frac{b}{b^2 + b^2}

\kappa = \frac{b}{2* b^2}

\kappa = \frac{1}{2 b}

3 0
3 years ago
What is the definition of inertia? A. The amount of force required to reach the speed of light. B. The rate at which an object a
MAVERICK [17]
The correct answer would be D
6 0
3 years ago
Read 2 more answers
A convex mirror, like the passenger-side rearview mirror on a car, has a focal length of -3.0 m . An object is 6.0 m from the mi
Artist 52 [7]

A) -2.0 m

Look at the ray diagram attached in the picture, where:

p identifies the location of the object

q identifies the location of the image

F identifies the focus of the mirror

Each tick represents 1 m

We have

p = 6.0 m is the distance of the object from the mirror

f = -3.0 m is the focal length

From the ray diagram, we see that q has a distance of 2.0 m from the mirror, and it's on the other side of the mirror compared to the object, so

q = -2.0 m

This can also be verified by using the mirror equation:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{-3.0 m}-\frac{1}{6.0 m}=-\frac{3}{6.0 cm}\\q = \frac{-6.0 cm}{3}=-2.0 cm

B) Upright and virtual

As we see from the picture, the image is upright, since it has same orientation as the object.

Also, we notice that the image is on the other side of the mirror, compared to the object. For a mirror,

- An image is said to be real if it is on the same side of the object

- An image is said to be virtual if it is on the opposite side of the mirror

Therefore, this means that the image is virtual.

8 0
3 years ago
Explain how its possible for a compound to have both iconic and covalent bonds.<br><br>Thanks!
Evgesh-ka [11]
The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.
3 0
3 years ago
Other questions:
  • Which property is expressed in distance units?
    9·1 answer
  • 22. A race car accelerates from 0.0 m/s to 5 m/s with a displacement of 2.5 m. What is the
    15·1 answer
  • Anthony is deciding between different savings accounts at his bank. He has four options, based on how frequently interest compou
    8·1 answer
  • Use your data to predict what a 400g bag would weigh.
    11·1 answer
  • A 143-g baseball is flying through the air with a speed of 180 km/hr just after it is hit by a bat. If its velocity is at an ang
    7·1 answer
  • HELP ME PLZ I HAVE LIMITED TIME Imagine your teacher asks you to design an experiment where you test the effect of temperature o
    9·1 answer
  • Which of the following is always the result when a centripetal force is applied?
    13·2 answers
  • Blending three primary colors of light
    13·1 answer
  • I can't type, so... please make brainliest answer.
    15·1 answer
  • HELP Due right now
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!