Answer:
Explanation:
Before it hits the ground:
The initial potential energy = the final potential energy + the kinetic energy
mgH = mgh + 1/2 mv²
gH = gh + 1/2 v²
v = √(2g (H - h))
v = √(2 * 9.81 m/s² * (0.42 m - 0.21 m))
v ≈ 2.0 m/s
When it hits the ground:
Initial potential energy = final kinetic energy
mgH = 1/2 mv²
v = √(2gH)
v = √(2 * 9.81 m/s² * 0.42 m)
v ≈ 2.9 m/s
Using a kinematic equation to check our answer:
v² = v₀² + 2a(x - x₀)
v² = (0 m/s)² + 2(9.8 m/s²)(0.42 m)
v ≈ 2.9 m/s
Draw a free body diagram to show which forces act in the x and y directions. The x component equation is σfx = 0. The σfx being all the forces acting in the x direction.
Answer:
Explanation:
Given parameters:
Weight of object = 49N
Force applied = 12N
Unknown:
Acceleration of object = ?
Solution:
The acceleration of the object is found by dividing the force by the weight;
Acceleration =
= 0.25m/s²
Answer:

Explanation: Weight of space probes on earth is given by:
W= weight of the object( in N)
m= mass of the object (in kg)
g=acceleration due to gravity(9.81
)
Therefore,


Similarly,


Now, considering these two parts as uniform spherical objects
Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.
Force between these two objects is given by:

G= gravitational constant (
)
= masses of the object
R= distance between their centres (in m)(18 m)
Substituiting all these values into the above formula

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.