Let us say that v is the
tangential velocity of the object, a to be the centripetal (which acts towards
the center of the circle) acceleration and F as the centripetal force, r to be
the radius of the circle and m is mass of the child. <span>
a = v^2 / r
F = ma = mv^2/r
Applying the given values to the equation:
F=30*(5^2/5) => 30*(25/5) => 30*5 => 150 Newtons</span>
Now work is Force times
distance, the distance is simply the circumference of the circle.
d = C = 2 * pi * r = 2 *
pi * 5 = 10π m
W = F * d = 150 N * 10π
m
<span>W = 1500π J = 4712.39 J</span>
Based on the data provided, the thermal energies at the given time intervals are as follows:
- At time t = 0.0 secs; thermal energy = 0.0 J
- At time, t = 0.8 secs; thermal energy = 0.0 J
- At time, t = 2.0 secs; thermal energy = 3.9 J
- At time, t = 2.8 secs; thermal energy = 6.7 J
<h3>What is the law of conservation of energy?</h3>
The law of conservation of energy states that the total energy in an isolated system is conserved.
For a ball undergoing energy conversion between kinetic and potential energy, the sum of the energy remains constant.
Any reduction in total energy is due to conversion of some energy to thermal energy.
- Sum of energy: Kinetic + potential + thermal = 15.2 J
- Thermal energy = 15.2 - (PE + KE)
At time t = 0.0 secs
Thermal energy = 15.2 - (15.2 + 0.0)
Thermal energy = 0.0 J
At time, t = 0.8 secs
Thermal energy = 15.2 - (4.7 + 10.5)
Thermal energy = 0.0 J
At time, t = 2.0 secs
Thermal energy = 15.2 - (7.4 + 3.9)
Thermal energy = 3.9 J
At time, t = 2.8 secs
Thermal energy = 15.2 - (8.5 + 0.0)
Thermal energy = 6.7 J
Therefore, the thermal energies at the given time intervals are as follows:
- At time t = 0.0 secs; thermal energy = 0.0 J
- At time, t = 0.8 secs; thermal energy = 0.0 J
- At time, t = 2.0 secs; thermal energy = 3.9 J
- At time, t = 2.8 secs; thermal energy = 6.7 J
Learn more about conservation of energy at: brainly.com/question/166559
Answer:
A spring is compressed and held at compression by a person before releasing it
Explanation:
All the other answers are showing things that are at rest and have no energy starting nor going through them. This answer show how the energy is starting and being released.
Answer:
From lowest to highest acceleration:
3rd train
2nd train
1st train
Explanation:
The acceleration of an object can be found by using Newton's second law:

where
a is the acceleration
F is the net force on the object
m is the mass of the object
We notice that for equal values of the forces F, the acceleration a is inversely proportional to the mass, m. Therefore, greater mass means lower acceleration, and viceversa.
So, the train with lowest acceleration is the one with largest mass, i.e. the 3rd train consisting of 50 equally loaded freight cars. Then, the 2nd train has larger acceleration, since it consists of 50 empty freight cars (so its mass is smaller). Finally, the 1st train (a single empty car) is the one with largest acceleration, since it is the train with smallest mass.