Answer:
a) 113N
b) 0.37
Explanation:
a) Using the Newton's second law:
\sum Fx =ma
Since the crate doesn't move (static), acceleration will be zero. The equation will become:
\sum Fx = 0
\sumFx = Fm - Ff = 0.
Fm is the applied force
Ff is the frictional force
Since Fm - Ff = 0
Fm = Ff
This means that the applied force is equal to the force of friction if the crate is static.
Since applied force is 113N, hence the magnitude of the static friction force will also be 113N
b) Using the formula
Ff = nR
n is the coefficient of friction
R is the reaction = mg
R = 31.2 × 9.8
R = 305.76N
From the formula
n = Ff/R
n = 113/305.76
n = 0.37
Hence the minimum possible value of the coefficient of static friction between the crate and the floor is 0.37
Answer: 0
Explanation: Initial velocity is 0.
A compound. For example, hydrogen and oxygen atoms form water.
Answer:
Form of energy: Example
1. Light energy: Electromagnetic radiation
2. Nuclear energy: Nuclear fission
3. Chemical energy: Energy stored in plant matter
4. Electrical energy: Lightning
5. Thermal energy: A hot surface
6. Sound energy: A tuning fork
7. Solar energy: Energy from the Sun
8. Mechanical energy: A moving vehicle
Answer:

Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:

Where
is the length of the string and
the velocity of propagation. Use this expression to find the value of
.

The velocity of propagation is given by the expression:

Where
is the desirable variable of the problem, the linear mass density, and
is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:

With the value of the tension and the velocity you can find the mass density:

