Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
= magnitude of current
magnitude of current is given as


= 1.87 A
Answer:
Explanation:
Projectile Motion. Projectile motion is different than free fall: it involves two dimensions instead of one. ... Balls traveling in two dimensions, only one of which experiences acceleration, require two sets of equations: one set for the x-direction and the other for the y-direction.
Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you
Answer:
plz write your questions in English
<h2>
The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.</h2>
Explanation:
Electric field is the ratio of force and charge.
Electric field, E = 280000 N/C
Charge, q = -7.9 C
We have

The magnitude of the force that acts on a charge of -7.9C at this spot is 2.21 x 10⁶ N.