Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
Answer:
The pressure increases by a factor 8
Explanation:
For a gas held at constant temperature, Boyle's law can be applied. It states that the product of the gas pressure and the gas volume is constant, so we can write:

where
is the initial pressure
is the final pressure
is the initial volume
is the final volume
For the gas in this problem, the volume is reduced from

to

so we can rewrite the equation as

this means that the pressure of the gas will increase by a factor 8.
Answer:
The reading will be the same.
Explanation:
Mass does not depend upon anything and it remains the same anywhere. What changes is the weight of the body because it depends upon gravity and is different at different places.
Giving me the brainest will be helpful.
The Third law is mixed with motion and force so if you drop a bouncy ball from 10ft it will hit the ground and loose half of its motion and come back up but only reach 5ft then when it bounces again only 2.5ft then so on so forth until it has no kinetic energy left.
Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!