It is wasted, most likely as light, in this case, or it is lost during the transport of electricity.
I believe the correct answer from the choices listed above is the third option. <span>The force exerted by the book on the table is equal to the force exerted by the table which is 4.0 N. The book does not move so it must be that the forces are balanced. Hope this answers the question.</span>
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
a 10 kg block reaches a point with a velocity of 15 m per second and slides down a rough track my the coefficient of the kinetic energy between the two surface ab and the block iis0.52
Answer:
C) Pressure will compress a gas, reducing its volume and giving it a greater density and concentration of particles.
Explanation:
At constant temperature, pressure and volume are inversely related.
P V = constant

As the pressure increases, the gas compresses, the particles come closer reducing the volume of gas.
As we know, with decrease in volume, density increases.


Thus, the pressure of a gas is directly related to concentration of particles. Increase in pressure causes increase in concentration of the particles.