Therefore, 1 mole<span> of gold weighs </span>196.9665<span> grams. So, in 2.8 grams of gold we would have:</span>
(2.8 gram)(1 mole/196.9665<span> gram) = 0.0142 mole.</span>
From Avogadro's number, we know that there are approximately 6.02 x 1023<span>atoms/mole.</span>
Answer:
NH3(aq)
Explanation:
Gold III hydroxide is an inorganic compound also known as auric acid. It can be dehydrated at about 140°C to yield gold III oxide. Gold III hydroxide is found to form precipitates in alkaline solutions hence it is not soluble in calcium hydroxide.
However, gold III hydroxide forms an inorganic complex with ammonia which makes the insoluble gold III hydroxide to dissolve in ammonia solution. The equation of this complex formation is shown below;
Au(OH)3(s) + 4 NH3(aq) -------> [Au(NH3)4]^3+(aq) + 3OH^-(aq)
Hence the formation of a tetra amine complex of gold III will lead to the dissolution of gold III hydroxide solid in aqueous ammonia.
Answer:
1) represented by a lower case letter
2) always masked by dominant genes
3) only expressed in the absence of a dominant gene
Explanation:
So if I take a black and a yellow marker- and tried drawing the yellow over the black- or the other way around- you'd still only see the black marker. The recessive trait is like the yellow marker. Now if I drew the yellow marker with another yellow marker you would see the yellow. I hope this helps!
Answer:
<h2>Density = 1.67 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 50 g
volume = 30 mL
Substitute the values into the above formula and solve for the density
That's

Wr have the final answer as
<h3>Density = 1.67 g/mL</h3>
Hope this helps you