a. pH=2.07
b. pH=3
c. pH=8
<h3>Further explanation</h3>
pH=-log [H⁺]
a) 0.1 M HF Ka = 7.2 x 10⁻⁴
HF= weak acid
![\tt [H^+]=\sqrt{Ka.M}\\\\(H^+]=\sqrt{7.2.10^{-4}\times 0.1}\\\\(H^+]=8.5\times 10^{-3}\\\\pH=3-log~8.5=2.07](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D%5Csqrt%7B7.2.10%5E%7B-4%7D%5Ctimes%200.1%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D8.5%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~8.5%3D2.07)
b) 1 x 10⁻³ M HNO₃
HNO₃ = strong acid
![\tt pH=-log[1\times 10^{-3}]=3](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-3%7D%5D%3D3)
c) 1 x 10⁻⁸ M HCl
![\tt pH=-log[1\times 10^{-8}]=8](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1%5Ctimes%2010%5E%7B-8%7D%5D%3D8)
Answer is a
bacteria doesn't have any cellular function in the cell.
Taking into account the definition of avogadro's number, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
<h3>
Avogadro's Number</h3>
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023×10²³ particles per mole. Avogadro's number applies to any substance.
<h3>This case</h3>
Then you can apply the following rule of three: if 6.023×10²³ particles are contained in 1 mole of H, then 2.3×10²¹ particles are contained in how many moles of H?
amount of moles of H= (2.3×10²¹ particles × 1 mole)÷ 6.023×10²³ particles
<u><em>amount of moles of H= 3.82×10⁻³ moles</em></u>
Finally, 3.82×10⁻³ moles of H are 2.3×10²¹ particles of H.
Learn more about Avogadro's Number:
<u>brainly.com/question/11907018?referrer=searchResults
</u>
<u>brainly.com/question/1445383?referrer=searchResults
</u>
<u>brainly.com/question/1528951?referrer=searchResults</u>
Answer: X3Y2
Explanation:
The formula is
X has a valency of 2
Y has a valency of 3
So, we interchange the valencies
Therefore, the formula is
X3Y2