Answer:
The pair of equations which has (2,12) as its solution is,
equation B and equation C.
Step-by-step explanation:
According to the question,
equation of line A is ![\frac {y - 16}{x + 6} = \frac {16 + 4}{-6 - 9}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2016%7D%7Bx%20%2B%206%7D%20%3D%20%5Cfrac%20%7B16%20%2B%204%7D%7B-6%20-%209%7D)
or, ![\frac {y - 16}{x + 6} = \frac {-4}{3}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2016%7D%7Bx%20%2B%206%7D%20%3D%20%5Cfrac%20%7B-4%7D%7B3%7D)
or, ![3y - 48 = -4x - 24](https://tex.z-dn.net/?f=%203y%20-%2048%20%3D%20-4x%20-%2024)
or, 3y + 4x = 24 ------------------(1)
Now, the point (2, 12) doesn't satisfy (1). Hence, (2,12) is not a solution for the line A.
Equation of line B is, ![\frac {y - 20}{x + 2} = \frac {20 - 0}{-2 - 8}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2020%7D%7Bx%20%2B%202%7D%20%3D%20%5Cfrac%20%7B20%20-%200%7D%7B-2%20-%208%7D)
or, ![\frac {y - 20}{x + 2} = -2](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2020%7D%7Bx%20%2B%202%7D%20%3D%20-2)
or, ![y - 20 = -2x - 4](https://tex.z-dn.net/?f=%20y%20-%2020%20%3D%20-2x%20%20-%204)
or, y + 2x = 16 -----------------------------(2)
The point (2,12) is satisfied by (2). Hence, (2, 12) is a solution for line B.
Equation of line C is, ![\frac {y + 6}{x + 7} = \frac {20 + 6}{6 + 7}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20%2B%206%7D%7Bx%20%2B%207%7D%20%3D%20%5Cfrac%20%7B20%20%2B%206%7D%7B6%20%2B%207%7D)
or, ![\frac {y + 6}{x + 7} = 2](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20%2B%206%7D%7Bx%20%2B%207%7D%20%3D%202)
or, y + 6 = 2x + 14
or. y - 2x = 8 -----------------------------------(3)
The point (2, 12) is satisfied by (3). Hence, (2 , 12) is a solution for the line C.
Equation of line D is, ![\frac {y - 20}{x - 7} =\frac {20 + 7}{7 - 0}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2020%7D%7Bx%20-%207%7D%20%3D%5Cfrac%20%7B20%20%2B%207%7D%7B7%20-%200%7D)
or, ![\frac {y - 20}{x - 7} = \frac {27}{7}](https://tex.z-dn.net/?f=%5Cfrac%20%7By%20-%2020%7D%7Bx%20-%207%7D%20%3D%20%5Cfrac%20%7B27%7D%7B7%7D)
or, 7y - 140 = 27x - 189
or, 7y - 27x = -49----------------------------------------(4)
The point (2, 12) is not satisfied by (4). hence, (2, 12) is not a solution of the line D
Hence, the pair of equations which has (2,12) as its solution is,
equation B and equation C.