Answer:
2Li + 2H2O → 2LiOH + H2
Explanation:
Lithium + Water = Lithium Hydroxide + Dihydrogen
Answer:
R=0.0438 Ω
Explicación:
1) Hallar el área o sección del conductor de cobre, usando esta fórmula:
A=π.r² (Pi x radio al cuadrado)
Debido a que conocemos el diámetro (1.5mm) su radio es la mitad de esto es decir 0.75mm, y lo sustituimos en la fórmula:
A=π.(0.75mm)²
A=π(0.5625mm²)
A=1.7671mm²
2) La resistividad del cobre es: rho = 0,0172 y la incluimos en la fórmula siguiente:
R=p
R=0,0172Ω x
Simplificamos:
R=
El resultado es:
R=0.0438 Ω
Explanation:
Answer:
Different types of rocks have different chemical composition.
Explanation:
Rock can be distinguished from each other by their chemical composition which is a product of the minerals they contain.
- A rock is an aggregate of minerals.
- Different suites of rocks have their inherent mineralogical composition and facie.
- This is because, these rocks form under different types of conditions from time to time.
- Igneous rocks form from molten rocks, sedimentary rocks form from pre-existing rocks and metamorphic rocks for under elevated temperature and pressure conditions.
- All these conditions plays important roles in the differentiation of minerals in the rock.
<u>Answer:</u> The volume of acid should be less than 100 mL for a solution to have acidic pH
<u>Explanation:</u>
To calculate the volume of acid needed to neutralize, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH
We are given:

Putting values in above equation, we get:

For a solution to be acidic in nature, the pH should be less than the volume of acid needed to neutralize.
Hence, the volume of acid should be less than 100 mL for a solution to have acidic pH
Answer:
Molecular formulas describe the exact number and type of atoms in a single molecule of a compound. The constituent elements are represented by their chemical symbols, and the number of atoms of each element present in each molecule is shown as a subscript following that element's symbol.