✅Show work regardless if student got answer correct or incorrect
q = mC∆T
q = (30.0g)(0.900J/goC)(50oC)
q = 1350 J
So, the right answer is 1350 J
IamSugarBee◽
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
Answer:
24 a 2.85
Explanation:
HCl is a powerful acid so it completely ioniz in water
Here are some examples of chemical properties:
Reactivity with other chemicals.
Toxicity.
Coordination number.
Flammability.
Enthalpy of formation.
Heat of combustion.
Oxidation states.
Chemical stability. HOPE THIS HELPS!
I would say the energy has to be decreased by 87 kj because the bonding is held together by 87 kj so removing that should prevent the bonding from taking place or reverse it I believe. In other words, a certain amount of energy is required to hold the bond together and in the absence of that energy, the bonding will not take place.