Answer:
7200 kPa
Explanation:
Applying,
PV/T = P'V'/T'................ Equation 1
Where P = Initial pressure of neon gas, V = Initial volume of neon gas, T = Initial temperature of neon gas, P' = Final pressure of neon gas, V' = Final volume of neon gas, T' = Final Temperature of neon gas
Make P' the subject of the equation
P' = PVT'/V'T.............. Equation 2
Given: P = 900 kPa, V = 8.0 L, T = 300 K, V' = 2.0 L, T' = 600 K
Substitute these values into equation 2
P' = (900×8×600)/(2×300)
P' = 7200 kPa
Lo afect porque cuando la temperature aumenta, el volumen aumentará, luego, cuando we mantiene la presión, es constante. Calentar el gas aumenta la emergía cinética we law partículas, lo que have que el gas se expanda.
Espero que esto ayude :)
Explanation:
Rate law is defined as the rate of a reaction is directly proportional to the concentration of reactants at constant temperature.
![Rate \propto [\text{concentration of reactant}]^{n}](https://tex.z-dn.net/?f=Rate%20%5Cpropto%20%5B%5Ctext%7Bconcentration%20of%20reactant%7D%5D%5E%7Bn%7D)
= k ![[\text{concentration of reactant}]^{n}](https://tex.z-dn.net/?f=%5B%5Ctext%7Bconcentration%20of%20reactant%7D%5D%5E%7Bn%7D)
where, k = rate constant
n = order of reaction
For the given reaction, 
Hence, its rate will be as follows.
Rate = ![k[H_{2}][NO]](https://tex.z-dn.net/?f=k%5BH_%7B2%7D%5D%5BNO%5D)
Also, it is known that slowest step in a chemical reaction is the rate determining step.
Hence, for the given rate law correct reaction is as follows.
Step 1 :
(slow)
Balancing this equation it becomes
(slow)
Step 2:
(fast)
It's depending on what size of the tree it is. For example, if the tree is large it will block most of the water that runs through. If the tree is small it shouldn't do as much besides block a little amount of water and it will probably go down stream.
This is based on my thinking