Answer:
Ionic bonds usually occur between metal and nonmetal ions. For example, sodium (Na), a metal, and chloride (Cl), a nonmetal, form an ionic bond to make NaCl.
Explanation:
Answer:
The options <u>(A) -</u>The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and <u>(C) </u>-The rate laws of bimolecular elementary reactions are second order overall ,<u>is true.</u>
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
<u>Therefore , the first and third statement is true.</u>
I think the answer would be Ionic sodium phosphate (Na3PO4) because it has the greatest boiling point elevation.
Answer:
The liquid collected during distillation when the evaporated substance condenses. A separation technique that uses evaporation to separate substances. The mixture is heated so that one substance evaporates. The vapour is collected and condenses into a liquid.
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.