Answer: They have different rigidities.
Explanation:
The angular momentum is defined as,

Acording to this text we know for conservation of angular momentum that

Where
is initial momentum
is the final momentum
How there is a difference between the stick mass and the bug mass, we define that
Mass of the bug= m
Mass of the stick=10m
At the point 0 we have that,

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity
vector from the point of reference (O), and ve is the velocity
At the end with the collition we have

Substituting




Applying conservative energy equation we have


Replacing the values and solving

Substituting
l=\frac{13}{0.54(9.8)}

Answer:
The maximum safe depth in salt water is 3758.2 m.
Explanation:
Given that,
Diameter = 20 cm
Radius = 10 cm
Thickness = 9.0 cm
Force 
Inside pressure = 1.0 atm
We need to calculate the area
Using formula of area

Put the value into the formula


We need to calculate the pressure
Using formula of pressure

Put the value into the formula



We need to calculate the maximum depth
Using equation of pressure


Put the value into the formula


Hence, The maximum safe depth in salt water is 3758.2 m.
Answer:
T = T
Explanation:
Time period of a simple pendulum is not affected by the mass of the bob. As we know,
. There is no factor of mass affecting when we derived the equation. The basic reason behind the time period is not affected is because of mass dependence on angular acceleration. As the mass increases the acceleration increase and the Time Period remains constant.
Answer:
(a) 
(b) The charge inside the shell is placed at the center of the sphere and negatively charged.
Explanation:
Gauss’ Law can be used to determine the system.

This is the net charge inside the sphere which causes the Electric field at the surface of the shell. Since the E-field is constant over the shell, then this charge is at the center and negatively charged because the E-field is radially inward.
The negative charge at the center attracts the same amount of positive charge at the surface of the shell.