Answer:
The total work on the ball is 36.25 Joules
Explanation:
There is an important principle on classical mechanics that is the work-energy principle it states that the total work on an object is equal the change on its kinetic energy, mathematically expressed as:
(1)
With W net the total work, Kf the final kinetic energy and Ki the initial kinetic energy. We're going to use this principle to calculate the total work on the baseball by the force exerted by the bat.
Kinetic energy is the energy related with the movement of an object and every classical object with velocity has some kinetic energy, it is defined as:

With m the mass of the object and v its velocity, knowing this we can use on:
In our case vf is the velocity just after the hit and vi the velocity just before the hit. For an average baseball its mass is 145g that is 0.145 kg, then

<span>Correct pairs:
a man jogging in the park --> motion energy (the energy is the kinetic energy of the man, moving with speed v)
a fully charged camera battery --> electric potential energy (the battery is fully charged, so it can deliver electrical energy when the camera is turned on)
a stove burner that’s turned on --> radiant energy (the stove burner emits energy by radiation)
an apple on a tree --> gravitational potential energy (when the apple is on the tree, it has gravitational potential energy equal to U=mgh, where m is the apple's mass and h its height from the ground)
</span><span>
</span>
The answer is: The addition of a small dense nucleus at the center of the atom.
<span>the Steady State Theory is the answer to this I believe!</span>