A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.

∴ 
∴ 
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4
Answer:
scientific law is a statement that summarizes a pattern found in nature.
Answer:
U = initial velocity, t = time taken, s = distance covered. Deceleration Formula is used to calculate the deceleration of the given body in motion.
Answer:
93 o 39.
Explanation:
Hola.
En este caso, podemos resolver este problema por medio del planteamiento de las siguientes ecuaciones:
1. Definimos <em>x</em> como el primer dígito y <em>y</em> como el segundo, por lo tanto, como su suma es 12, escribimos:
<em>x</em> + <em>y</em> = 12
2. Ahora, dado que el primer dígito, x es el triple del segundo, escribimos:
<em>x</em> = 3 <em>y</em>
De este modo, podemos resolver para <em>y</em>:
3 <em>y</em> + <em>y</em> = 12
4 <em>y</em> = 12
<em>y</em> = 12 / 4
<em>y</em> = 3
Y para <em>x</em>:
<em>x</em> = 3 <em>y</em>
<em>x</em> = 3 * 3
<em>x</em> = 9
Así, el número puede ser 93 o 39.
¡Saludos!