Time = (distance) / (speed)
= (30 km) / (30 m/s)
= (30,000 m) / (30 m/s)
= (30,000 / 30) sec
= 1,000 seconds
= 16 minutes 40 seconds
Answer:
When the ball goes to first base it will be 4.23 m high.
Explanation:
Horizontal velocity = 30 cos17.3 = 28.64 m/s
Horizontal displacement = 40.5 m
Time
Time to reach the goal posts 40.5 m away = 1.41 seconds
Vertical velocity = 30 sin17.3 = 8.92 m/s
Time to reach the goal posts 40.5 m away = 1.41 seconds
Acceleration = -9.81m/s²
Substituting in s = ut + 0.5at²
s = 8.92 x 1.41 - 0.5 x 9.81 x 1.41²= 2.83 m
Height of throw = 1.4 m
Height traveled by ball = 2.83 m
Total height = 2.83 + 1.4 = 4.23 m
When the ball goes to first base it will be 4.23 m high.
Answer:
Answer is C. Both technicians A and B.
Refer below.
Explanation:
Two technicians are discussing the testing of a catalytic converter. Technician A says that a vacuum gauge can be used and observed to see if the vacuum drops with the engine at 2500 RPM for 30 seconds. Technician B says that a pressure gauge can be used to check for backpressure. The following technician is correct:
Both technicians A and B
Answer:
Explanation:
Given that, the pilot can withstand 9g acceleration which is approximately 88m/s².
Now, the pilot is traveling in a circle of radius
r = 3340 m
And the speed is
v = 495 m/s
Then, acceleration?
The acceleration of a circular motion can be determine using centripetal acceleration
a = v² / r
a = 495² / 3340
a = 73.36 m/s².
Since the acceleration is less that the acceleration the pilot can withstand, then, I think the pilot makes the turn without blacking out and successfully