1 mole of a pure substance has a mass equal to its molecular mass expressed in grams.
This is known as the molar mass, M, and has the units g mol-1
So 2 moles of a substance would have a mass = 2 x molar mass
3 moles of a substance would have a mass = 3 x molar mass etc
This leads to the formula: mass = moles x molar mass
If we let:
m = mass of substance in grams,
n = moles of pure substance,
M = molar mass of the pure substance in g mol-1
we can write the equation: m = n x M
This equation can be rearranged to give the following:
n = m ÷ M (moles = mass ÷ molar mass)
M = m ÷ n (molar mass = mass ÷ moles)
Answer:
ΔH =
Explanation:
In a calorimeter, when there is a complete combustion within the calorimeter, the heat given off in the combustion is used to raise the thermal energy of the water and the calorimeter.
The heat transfer is represented by
= 
where
= the internal heat gained by the whole calorimeter mass system, which is the water, as well as the calorimeter itself.
= the heat of combustion
Also, we know that the total heat change of the any system is
ΔH = ΔQ + ΔW
where
ΔH = the total heat absorbed by the system
ΔQ = the internal heat absorbed by the system which in this case is 
ΔW = work done on the system due to a change in volume. Since the volume of the calorimeter system does not change, then ΔW = 0
substituting into the heat change equation
ΔH =
+ 0
==> ΔH =
Answer: jupiter
Explanation: because jupiter is much further than the mar from the sun
Answer:
using higher concentration of the nucleophile
Explanation:
In SN2 reaction, the attack of the nucleophile on the substrate occurs simultaneously as the leaving group departs. The entering group normally attacks through the back side of the molecule. The reaction is concerted and bimolecular. This implies that the concentration of the nucleophile is important in the rate equation for the reaction. Hence increasing the concentration of the nucleophile will increase the rate of SN2 reaction.
D: a solution with a pH greater than 7