1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mel-nik [20]
3 years ago
9

dam is used to block the passage of a river and to generate electricity. Approximately 58.4 x 103 kg of water falls each second

through a height of 20.1 m. If one half of the gravitational potential energy of the water were converted to electrical energy, how much power (in MW) would be generated
Physics
1 answer:
mrs_skeptik [129]3 years ago
3 0

Answer:

8.049 MW

Explanation:

The expression for gravitational potential energy is given as

Ep = mgh............. Equation 1

Ep = gravitational potential energy, m = mass of water, h = height, g = acceleration due to gravity.

Given: m = 58.4×10³ kg, h = 20.1 m, g = 9.81 m/s²

Substitute into equation 1

Ep =  58.4×10³(20.1)(9.81)

Ep = 1.6098×10⁷ J.

If one half the gravitational potential energy of the water were converted to electrical energy

Electrical energy = Ep/2

Electrical energy = (1.6098×10⁷)/2

Electrical energy = 8.049×10⁶ J

In one seconds,

The power generated = 8.049×10⁶ W

Power generated = 8.049 MW

You might be interested in
An Amtrak going 250m/s comes to a stop in 12s. What is the<br> acceleration?
astraxan [27]

Answer:

a=\frac{v-u}{t}  \\a = \frac{0-250}{12} = -20.83 m/s

Explanation:

you mean deceleration right ? because the acceleration is 250m/s

7 0
3 years ago
Exercises
Crank

\\ \rm\Rrightarrow \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{1}{-10}+\dfrac{1}{38}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{-19+5}{190}

\\ \rm\Rrightarrow \dfrac{1}{u}=\dfrac{-14}{190}

\\ \rm\Rrightarrow u=\dfrac{190}{-14}

\\ \rm\Rrightarrow u=13.6cm

Real

5 0
3 years ago
As a rain storm passes through a region, there is an associated drop in atmospheric pressure. If the height of a mercury baromet
Pani-rosa [81]

Answer:

new atmospheric pressure is 0.9838 × 10^{5}  Pa

Explanation:

given data

height = 21.6 mm = 0.0216 m

Normal atmospheric pressure = 1.013 ✕ 10^5 Pa

density of mercury = 13.6 g/cm³

to find out

atmospheric pressure

solution

we find first height of mercury when normal pressure that is

pressure p = ρ×g×h

put here value

1.013 × 10^{5}  = 13.6 × 10³ × 9.81 × h

h =  0.759 m

so change in height Δh = 0.759 - 0.0216

new height H = 0.7374 m

so new pressure = ρ×g×H

put here value

new pressure = 13.6 × 10³ × 9.81 × 0.7374

atmospheric pressure = 98380.9584

so new atmospheric pressure is 0.9838 × 10^{5}  Pa

6 0
3 years ago
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
Before designing the filter, one must understand the relationship between the output voltage of the circuit and the frequency. F
Kamila [148]

Answer:

Option b. is correct

Explanation:

An RLC electrical circuit consists of constituent components: a resistor (R), an inductor (L), and a capacitor (C). A resistor, an inductor, and a capacitor are connected in series or parallel.

The impedances of the circuit elements depend on the frequency.

Both impedance magnitudes decrease when the frequency increases

5 0
3 years ago
Other questions:
  • A box of mass m slides down an inclined plane that makes an angle of φ with the horizontal. if the coefficient of kinetic fricti
    8·1 answer
  • Hiw many times lager then a centimeter is a dekagram​
    5·1 answer
  • Question 3 (1 point) Question 3 Unsaved
    12·1 answer
  • How do cells maintain homeostasis
    5·1 answer
  • Water flows from one reservoir to another a height, 41 m below. A turbine (η=0.77) generates power from this flow. 1 m3/s passes
    5·1 answer
  • A ski gondola is connected to the top of a hill by a steel cable of length 600 m and diameter 1.2 cm . As the gondola comes to t
    13·1 answer
  • The human body can store excess animo acids as a protein source ?
    12·1 answer
  • what happens to the current in a circuit if a 1.5 volt battery is removed and is placed by a 9 volt battery?
    13·1 answer
  • Plz help a smol bean out (no links btw)
    15·1 answer
  • The van accelerates at 2.2m/s^2. The force causing the acceleration is 5.5 kN. Calculate the mass of the van
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!