Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
Energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.
Answer:
A)6.15 cm to the left of the lens
Explanation:
We can solve the problem by using the lens equation:

where
q is the distance of the image from the lens
f is the focal length
p is the distance of the object from the lens
In this problem, we have
(the focal length is negative for a diverging lens)
is the distance of the object from the lens
Solvign the equation for q, we find


And the sign (negative) means the image is on the left of the lens, because it is a virtual image, so the correct answer is
A)6.15 cm to the left of the lens
Answer: Use this F=Ma.
Explanation: So your answer will be
F=1 Kg+9.8 ms-2
So the answer will be
F=9.8N
How'd I do this?
I just used Newton's second law of motion.
I'll also put the derivation just in case.
Applied force α (Not its alpha, proportionality symbol) change in momentum
Δp α p final- p initial
Δp α mv-mu (v=final velocity, u=initial velocity and p=v*m)
or then
F α m(v-u)/t
So, as we know v=final velocity & u= initial velocity and v-u/t =a.
So F α ma, we now remove the proportionality symbol so we'll add a proportionality constant to make the RHS & LHS equal.
So, F=<em>k</em>ma (where k is the proportionality constant)
<em>k</em> is 1 so you can ignore it.
So, our equation becomes F=ma
Answer:
Final velocity (v) = 36 m/s
Distance traveled (s) = 2,160 m
Explanation:
Given:
Initial velocity (u) = 0
Acceleration (a) = 0.3 m/s
Time travel (t) = 2 minutes = 120 seconds
Find:
Final velocity (v) = ?
Distance traveled (s) = ?
Computation:
v = u + at
v = 0 + 0.3(120)
v = 0.3(120)
v = 36 m/s
Final velocity (v) = 36 m/s
Distance traveled (s) = ut + (1/2)at²
Distance traveled (s) = (0.5)(0.3 × 120 × 120)
Distance traveled (s) = 2,160 m