Answer:
The
electrons are moving through the superconductor per second.
Explanation:
Given :
Current
A
Charge of electron
C
Time
sec
From the formula of current,
Current is the number of charges flowing per unit time.

Where
number of charges means in our case number of electrons



Therefore,
electrons are moving through the superconductor per second.
C. Sugars dissolved in water
the resistance of the cable is 582.9 ohms
we are given the length of the cable which is 3 km, of 1.5 mm in, the diameter and resistivity of copper which is 1.72 m
The formula we are referring to for calculating the resistance of the cable is
R = ρl/A.
As there are 19 strands of copper conductors, so the resistance will be
R = 19( ρl/A)
Here ρ is the resisitivity = 1.72 , l is the length = 3(1+0.05)*10³3= 3150 m
A=pie/4(1.5 x 10⁻³)^2 =1.766 x 10⁻⁶ =1.766 x 10^-6
Substituting the values in the formula we get
R = 19 ( 1.72*3150 )/1.766 x 10⁻⁶
= 582.9 ohm
To know more about resistance refer to the linkhttps://brainly.com/question/14547003?referrer=searchResults.
#SPJ4
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
vib. motion motion of wire of guitar
circular motion revolution of earth around sun
1ml 1cm3
1m3 100cm3
volume of liquid measuring cylinder