The triangle <span>in the first law of thermodynamics, represents energy that moves from a hot object to a cooler object.</span>
Answer:
the distance from charge A to C is r₁₃= 1.216 m
Explanation:
following Coulomb's law , the force exerted by 2 point charges between themselves is:
F= k*q₁*q₂/r₁₂² , where q is charge , r is distance and 1 and 2 represents the charge A and charge B respectively , k=constant
since C ( denoted as 3) is at equilibrium
F₁₃=F₂₃
k*q₁*q₃/r₁₃²=k*q₂*q₃/r₂₃²
q₁/r₁₃²=q₂/r₂₃²
r₁₃²/q₁=r₂₃²/q₂
r₂₃=r₁₃*√(q₂/q₁)
since C is at rest and is co linear with A and B ( otherwise it would receive a net force in either vertical or horizontal direction) , we have
r₁₃+r₂₃=d=r₁₂
r₁₃+r₁₃*√(q₂/q₁)=d
r₁₃*(1+√(q₂/q₁))=d
r₁₃=d/(1+√(q₂/q₁))
replacing values
r₁₃=d/(1+√(q₂/q₁)) = 3.00 m/(1+√(3.10 C/1.44 C)) = 1.216 m
thus the distance from charge A to C is r₁₃= 1.216 m
Answer:
a) Acceleration is zero
, c) Speed is cero
Explanation:
a) the equation that governs the simple harmonic motion is
x = A cos (wt +φφ)
Where A is the amplitude of the movement, w is the angular velocity and φ the initial phase determined by the initial condition
Body acceleration is
a = d²x / dt²
Let's look for the derivatives
dx / dt = - A w sin (wt + φ)
a = d²x / dt² = - A w² cos (wt + φ)
In the instant when it is not stretched x = 0
As the spring is released at maximum elongation, φ = 0
0 = A cos wt
Cos wt = 0 wt = π / 2
Acceleration is valid for this angle
a = -A w² cos π/2 = 0
Acceleration is zero
b)
c) When the spring is compressed x = A
Speed is
v = dx / dt
v = - A w sin wt
We look for time
A = A cos wt
cos wt = 1 wt = 0, π
For this time the speedy vouchers
v = -A w sin 0 = 0
Speed is cero
The answer is 86 degrees Fahrenheit. Formula is (30 x 9.5) + 32 = 86
Explanation:
Amplitude, in physics, the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path. ... Waves are generated by vibrating sources, their amplitude being proportional to the amplitude of the source.