Before we find impulse, we need to find the initial and final momentum of the ball.
To find the momentum of the ball before it hit the floor, we need to figure out its final velocity using kinematics.
Values we know:
acceleration(a) - 9.81m/s^2 [down]
initial velocity(vi) - 0m/s
distance(d) - 1.25m [down]
This equation can be used to find final velocity:
Vf^2 = Vi^2 + 2ad
Vf^2 = (0)^2 + (2)(-9.81)(-1.25)
Vf^2 = 24.525
Vf = 4.95m/s [down]
Now we need to find the velocity the ball leaves the floor at using the same kinematics concept.
What we know:
a = 9.81m/s^2 [down]
d = 0.600m [up]
vf = 0m/s
Vf^2 = Vi^2 + 2ad
0^2 = Vi^2 + 2(-9.81)(0.6)
0 = Vi^2 + -11.772
Vi^2 = 11.772
Vi = 3.43m/s [up]
Now to find impulse given to the ball by the floor we find the change in momentum.
Impulse = Momentum final - momentum initial
Impulse = (0.120)(3.43) - (0.120)(-4.95)
Impulse = 1.01kgm/s [up]
Answer:
No
Explanation:
Recall that the hierarchy of wavelength color from minimum wavelength to maximum wavelength is:
and

As a result, blue light has a higher energy level than green and red light.
As a result, the surface glows due to the blue LED. The green LED, on the other hand, would not allow the surface to glow as much as the red LED, which has a lower energy level when compared to the green light. As a result, the red LED would not allow the surface to glow as well.
<span>Most of the anaerobic bursts lasts for between 30 seconds and two minutes. The duration is short because oxygen is the major driving force of all the biological process in the body.</span>
Answer:
Friction charging is a very common method of charging an object. However, it is not the only process by which objects become charged. In this section of Lesson 2, the charging by induction method will be discussed. Induction charging is a method used to charge an object without actually touching the object to any other charged object. An understanding of charging by induction requires an understanding of the nature of a conductor and an understanding of the polarization process.