Answer:
Re=160ohm
Explanation:
Step#1
Rt=R1+R2 ( because both are in series)
Rt=(100+220 ) ohm
Rt=320 ohm
Step#2
Rt and R3 are parallel so,
Re= (Rt× R3) ÷ (Rt+R3)
Re= (320×320)÷( 320+320)
Re = 102,400÷ 640
Re=160ohm
Answer:

Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by

where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is

in the second case, the horizontal velocity is increased to

And so the new distance travelled will be

So, the distance increases linearly with the horizontal velocity.
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
As per the question the color of laser light is given as red.
If we arrange all the electromagnetic waves in the decreasing order of frequency ,then the electromagnetic spectrum contains gamma ray as the first which is followed by all other electromagnetic waves according to their frequency.
The visible light ranges from 400 nm to 700 nm which contains sunlight i.e white colors with it's constituent colors starting from violet to red. The red color is the longest wavelength part of the visible region.
The wavelength of visible light is longer than ultraviolet wave but smaller than infrared radiation. Except the bisible region,the color of radiation is invisible to eye.
As per the question the color of emiited laser radiation is red .Hence it must lie in the visible region of the electromagnetic spectrum.
Answer:
There would be complete destructive interference.
Explanation:
This is because since the waves are completely out of phase, the phase difference is half wavelength, that is the phase angle is 180°. The vibrating sources are 180° out of phase with each other.
Since this is the case, the crest of the one source meets the trough of the other, this causes the resultant vibrational wave to cancel out, thus producing a destructive interference pattern.
Since the vibrating sources are completely out of phase, every point they meet is completely out of phase, so the resultant interference pattern would produce a complete destructive interference pattern of no wave.