I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Kinetic energy is defined as the energy of motion. On the other hand, potential energy is the energy of non-motion.
Hope that helped =)
Answer:
The mass of Ar is 36.91g
Explanation:
The gas mixture consist of Neon(Ne) and Argon(Ar)
Partial pressure of Ar = total pressure of mixture - partial pressure = 4 - 0.3 = 3.7 atm
Mole fraction of Ar = partial pressure of Ar ÷ total pressure of mixture = 3.7/4 = 0.925
Mass of Ar = 0.925 × molecular weight of Ar = 0.925 × 39.9 = 36.91g
Answer:
μ = 0.375
Explanation:
F = Applied force on the trash can = 75 N
W = weight of the trash can = 200 N
f = frictional force acting on trash can
Since the trash can moves at constant speed, force equation for the motion of can is given as
F - f = 0
75 - f = 0
f = 75 N
μ = Coefficient of friction
frictional force is given as
f = μ W
75 = μ (200)
μ = 0.375