Answer:
Astronaut in spacecraft while orbiting earth experience weightlessness because there is no gravity of earth or moon is acting on the body of an astronaut.
while on earth, we experience weight because the gravity of earth is acting on our body which is pulling us downward.
Both spacecraft and the astronauts both are in a free-fall condition.
Answer:
-1.03 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².
Mathematically, acceleration is expressed as
a = (v-u)/t ........................ Equation 1
Where a = acceleration, v = final velocity, u = initial velocity, t = time.
Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.
Substituting into equation 2
a = (7.20-13.60)/6.2
a = -6.4/6.2
a = -1.03 m/s²
Note: a is negative because, the hockey puck is decelerating.
Hence the average acceleration = -1.03 m/s²
Answer:
3.42N
Explanation:
*not too sure bc i left my physics notes at school so it might not be 100% accurate :p*
Use the equation: F = (GMm)/(r^2)
F = force of gravity
G = gravitational constant (6.7x10^-11)
M = mass1 (2.5x10^30kg)
m = mass2 (1kg)
r = radius (7000m)
Plug it in: F = ((6.7x10^-11)(2.5x10^30)(1)) / (7000^2)
F = (1.675x10^20) / (4.9x10^7)
F = 3.4183673x10^12
F = 3.42N
You are given the mass of a sphere that is 26 kg sphere and it is released from rest when θ = 0°. You are also given the force of the spring that is F = 100 N. You are asked to find the tension of the spring. Imagine that the sphere is connected to a spring. The spring exerts a tension and the spring exerts gravitational pull. This will follow the second law of newton.
T - F = ma
T = ma + F
T = 26kg (9.81m/s²) + 100 N
T = 355.06 N