They don't want to be killed or they are hiding
A) <u>Weight = mass × acceleration (due to gravity) </u>
= 60×9.8
= 588 N
<u>B) Potential energy = mass x gravity x change in height
</u>
1,000 = 60.0 x 9.8 x h
h = 1.7 m
<u>C) Kinetic energyF = potential energyI
</u>
KEF = 1/2mv2
PEI = mgh = 1,000 J
1/2mv2 = 1,000
1/2(60.0)v2 = 1,000
v2 = 33.33
v = 5.77 m/s
The mass of an object always stays the same since it is really just the amount of matter in an object so no matter the force applied, as long as the object does not lose or gain matter, the object stays the same
Answer:
No, it will not and this has a historical importance. The reason is that transformers work via induction of electrical forces by changes in magnetic fields, so the constat fields produced by dc currents won't work at all
Explanation:
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.