Considering the Doppler efect, the frequency heard by the student would change if:
- if the student walked toward the police car.
- if the student walked away from the police car.
- if the police car moved toward the student.
- if the police car moved away from the student.
<h3>Doppler effect</h3>
The Doppler effect is defined as the change in the apparent frequency of a wave produced by the relative motion of the source with respect to its observer. In other words, this effect is the change in the perceived frequency of any wave motion when the sender and receiver, or observer, move relative to each other.
The following expression is considered the general case of the Doppler effect:

Where:
- f', f: Frequency perceived by the receiver and frequency emitted by the transmitter, respectively. Its unit of measurement in the International System (S.I.) is the hertz (Hz), which is the inverse unit of the second (1 Hz = 1 s⁻¹)
- v: Wave propagation speed in the medium. It is constant and depends on the characteristics of the medium. In this case, the speed of sound in air is considered to be 343 m/s.
- vR, vE: Receiver and transmitter speed respectively. Its unit of measure in the S.I. is the m/s
- ±, ∓:
- We will use the + sign:
- In the numerator if the receiver approaches the sender
- In the denominator if the sender moves away from the receiver
- In the numerator if the receiver moves away from the sender
- In the denominator if the sender approaches the receiver
In summary, the Doppler Effect is an alteration of the observed frequency of a sound due to the movement of the source or the observer, that is, they are changes in the frequency and wavelength of a wave due to the relative movement between the wave source and the observer.
<h3>Changes on the frequency </h3>
In this case, considering the Doppler effect, the frequency heard by the student would change if:
- if the student walked toward the police car.
- if the student walked away from the police car.
- if the police car moved toward the student.
- if the police car moved away from the student.
Learn more about Doppler effect:
brainly.com/question/15307081
brainly.com/question/4052291
brainly.com/question/15097772
brainly.com/question/3841958
#SPJ12
Airports use ramps to connect the plane to the airport and towing trucks use ramps to get the vehicles on the truck
I can’t see the picture what do you need help with
Answer:
See Explanation
Explanation:
Solution:-
Earthquakes happen when rock below the Earth's surface moves abruptly. Usually, the rock is moving along large cracks in Earth's crust called faults. Most earthquakes happen at or near the boundaries between Earth's tectonic plates because that's where there is usually a large concentration of faults. Some faults crack through the Earth because of the stress and strain of the moving plates. Other, large faults are the boundary between plates, such as the San Andreas Fault on the North American west coast.
Since earthquakes happen along faults and most faults are near plate boundaries, the yellow dots in the animation are found mostly at the boundaries between Earth's tectonic plates.
A subduction zone is the biggest crash scene on Earth. These boundaries mark the collision between two of the planet's tectonic plates. The plates are pieces of crust that slowly move across the planet's surface over millions of years.
Where two tectonic plates meet at a subduction zone, one bends and slides underneath the other, curving down into the mantle. (The mantle is the hotter layer under the crust.)
Tectonic plates can transport both continental crust and oceanic crust, or they may be made of only one kind of crust. Oceanic crust is denser than continental crust. At a subduction zone, the oceanic crust usually sinks into the mantle beneath lighter continental crust. (Sometimes, oceanic crust may grow so old and that dense that it collapses and spontaneously forms a subduction zone, scientists think.)