Answer:
The answer to your question is letter B
Explanation:
Incorrect name
A. acetic acid This name is correct for the acid with formula CH₃COOH
B. hydrocarbonate acid This is not the name for acid but for a molecule that has hydrogen and a metal.
C. hydrocyanic acid This name is correct for the inorganic molecule with formula HCN
D. sulfurous acid This name is correct and is the name of the inorganic molecule with formula H₂SO₃.
E. phosphoric acid This name is correct for the acid with formula H₃PO₄.
Answer: Correct name will be is aluminum bromide
Explanation:
In a molecular formula ,
Aluminium atoms present = 1
Bromine atoms present = 3
Charge on aluminium is +3 and charge on bromine is -1.
While naming:
- Name of the cation is written first. Simple name of the element is written
- After name of cation name of an anions written with suffix 'ide' in the end.
So, the name of
will be aluminium bromide.
Phosphorus + Sulfur ------> Phosphorus sulfide
2P + 3S ------> P2S3
Hope it helped!
Answer:
The mass of the jar and contents remained the same after the metal was burned.
Explanation:
My prediction about the experimental results is that the mass of the jar and contents remained the same after the metal was burned in the jar.
This is compliance with the law of conservation of mass which states that in a chemical reaction, matter is neither created nor destroyed by bonds are rearranged for new compounds to form.
- In compliance with this law, it is expected that the mass of the jar and its content will remain the same before and after the reaction.
- No new material was added and no material was removed from the jar.
More precisely, we need to specify its position<span> relative to a convenient reference frame. .... Also you s</span>hould know<span> that some people use the subscript "0" to refer to the ... mx, </span>start<span> subscript, 0, end subscript, equals, 1, </span>point<span>, 5, space, m and her </span>final<span> ... </span>between<span> two </span>points<span>, or we </span>can<span> talk about the distance traveled by an </span>object<span>.</span>