We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
0.8s
Explanation:
Given parameters:
Height of shelf = 3m
Unknown:
Time it will take to hit the ground = ?
Solution:
To solve this problem, we use the expression below;
x = ut +
gt²
x is the height
u is the initial velocity = 0m/s
g is the acceleration due to gravity = 9.8m/s²
t is the time taken = ?
Now insert the parameters and solve for t;
3 = (0 x t) +(
x 9.8 x t²)
3 = 4.9t²
t² = 0.6
t = 0.8s
Because gravity has been known to define as a force of attraction between things that have mass.
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum

Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1
14 m/s or 50km/h. See the details in the attached picture.