<span>R = rate of flow = 0.370 L/s
H = height = 2.9 m
T= time = 3.9 s
V = velocity of water when it hits the bucket = sqrt(2gh) = sqrt(2 x 9.8 x 2.9) =7.539 m/s2
G value = 9.8 m/s2
Wb = weight of bucket = 0.690 kg x 9.8 m/s2 = 6.762 N
Wa = weight of accumulated water after 3.9 s
Fi = force of impact of water on the bucket
S = reading on the scale = Wa + Wb + Fi
mass of water accumulated after 3.9 s = R x T = 0.370 x 3.9 = 1.443 L = 1.443 kg
Therefore, Wa = 1.443 x 9.8 = 14.1414 N
Fi = rate of change of momentum at the impact point = R x V (because R = dm/dt)
= 0.37 x 7.539 = 2.78943 N
S = 14.1414 + 6.762 + 2.78943 = 23.692 N</span>
Answer:
change in entropy is 1.44 kJ/ K
Explanation:
from steam tables
At 150 kPa
specific volume
Vf = 0.001053 m^3/kg
vg = 1.1594 m^3/kg
specific entropy values are
Sf = 1.4337 kJ/kg K
Sfg = 5.789 kJ/kg
initial specific volume is calculated as





FROM STEAM Table
at 200 kPa
specific volume
Vf = 0.001061 m^3/kg
vg = 0.88578 m^3/kg
specific entropy values are
Sf = 1.5302 kJ/kg K
Sfg = 5.5698 kJ/kg
constant volume so




Change in entropy 
=3( 3.36035 - 2.88) = 1.44 kJ/kg
Explanation:
First we will convert the given mass from lb to kg as follows.
157 lb = 
= 71.215 kg
Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

= 12818.7 mg
Convert the % of (w/w) into % (w/v) as follows.
0.65% (w/w) = 
= 
= 
Therefore, calculate the volume which contains the amount of caffeine as follows.
12818.7 mg = 12.8187 g = 
= 1972 ml
Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.