Answer:
2.80 MJ
Explanation:
(a) We want to calculate the energy U of the battery, where its voltage is E = 13.0V and the supplied current is I = 60 A. We can neglect the internal resistance, so the terminal voltage equals the emf of the battery V = 13.0V. The quantity of delivered energy is given by the rate at which energy is delivered to it in a certain time t. We could obtain the rate at which energy is transferred by using equation , where the rate represents the power P = IV. Therefore, the energy produced is given by
U = P*t (P = IV)
U = I*V*t (1)
Now we can plug our values for I, V and t into equation (1) to get the energy produced in time t = 1 h = 3600 s
U = I*V*t = (60 A)(13 V)(3600s) = 2.80 MJ
Answer:
Closed system, because the speed of the car is as expected in the case where an object has uniform acceleration for a time t
Explanation:
Here in the question it is mentioned that a toy car has an initial acceleration of 2m/s² across a horizontal surface so we can say that it is acted upon by an external force
Assuming that the acceleration is constant and the reason for this assumption is there at the last
The major difference between an open system and closed system is in case of open system there will be transfer of matter and in case of closed system there will be no change in matter of the system
If acceleration is constant in case of closed system we can expect the speed of the car after a time t by using the formula
s = u×t + 0·5×a×t²
where s is the distance travelled
t is the time taken to travel that distance
u is the initial velocity
a is the acceleration of that system
But in case of open system as there will be a change of mass there will be a change in velocity of the system so in this case we cannot expect the speed of the car after a time t
And if the acceleration is not constant then we cannot say that the toy car is an open system or closed system, that is why we are assuming that the acceleration of the toy car is constant
Answer:
A 'kink' in the glass tube which breaks the mercury as it contracts, storing the highest temperature reading. The glass tube is shaped like a lens to magnify the thin mercury thread. Shaking the thermometer resets the mercury back into the bulb.
No two electrons in an atom or molecule may have the same four electronic quantum numbers, according to the Pauli Exclusion Principle. Only two electrons can fit into an orbital at a time, hence they must have opposing spins.
<h3>What is Pauli's exclusion principle ?</h3>
According to Pauli's Exclusion Principle, no two electrons in the same atom can have values for all four of their quantum numbers that are exactly the same. In other words, two electrons in the same orbital must have opposing spins and no more than two electrons can occupy the same orbital.
- The reason it is known as the exclusion principle is because it states that all other electrons in an atom are excluded if one electron in the atom has the same specific values for all four quantum numbers.
Learn more about Pauli's exclusion principle here:
brainly.com/question/2623936
#SPJ4
Answer:
the SI unit of momentum is :- kg.ms-1
and we know that,
kinetic energy = 1/2 mv2
E=p2/2m
p=(2Em)1/2
so the derived units are (J.kg)1/2
Explanation: