<h2>Answer: True
</h2>
The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.
In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.
It should be noted that this effect bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
Answer:
Polaroid fliter
Explanation:
light can be polarized by using Polaroid filters
Polaroid fliter are made of special material that is capable of blocking one of the two planes of vibration of an electromagnetic wave
hope this is useful--(have a good day)
Answer:

Explanation:
In this question we have given

we have to find

We know that
optical path difference for bright fringe is given as
Here,
n is order of fringe
and optical path difference for dark fringe is given as
since the light with wavelength
produces its third-order bright fringe at the same place where the light with wavelength
produces its fourth dark fringe
it means
optical path difference for 3rd order bright fringe= optical path difference for forth order dark fringe
Therefore,
...............(1)
Put value of
in equation (1)



Answer:
Explanation:
The work increased the potential energy
W = PE = mgh = 40(9.8)(15) = 5880 J(oules)