Answer:
p = -8 kg-m/s
Explanation:
Given that,
Initial speed of the rock, u = 8 m/s
Mass of the rock, m = 1 kg
The ball travels up to a maximum height, then returns to the ground.
We need to find the rock's momentum as it strikes the ground. Let v be the final speed of the rock. Its final speed is as same as initial speed i.e. 8 m/s but in negative direction. So
p = mv
p = 1 kg × (-8 m/s)
= -8 kg-m/s
So, the rock's momentum as it strikes the ground is (-8 kg-m/s).
Answer:
The length of the rope must be an integral multiple of the wavelength of the wave.
Explanation:
Answer:
V = f λ speed of wave in terms of frequency and wavelength
t = S / V time for wave to travel a distance S
t = 91.4 m / 344.5 m/s = .265 sec time to travel 91.4 m
Answer:
She will make the jump.
Explanation:
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting

So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8
, time = 2.85
Substituting

So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.
Yes thank u teehee
.................... x