Answer:
The mass and velocity for kinetic energy. Potential Energy: How high an object is and the mass in kilograms or it is the weight in and how high an object is. There are two formulas to calculate potential energy, but the one with grams is used more often.
Explanation:
Hope this helps!
From Newton's second law, we know F = ma, where a is the acceleration and m is the mass in kg.
F = 1000kg * 9.8m/s = 9800N
F = 9800 N
Hope this helps!
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s
Search Results
Featured snippet from the web
Work is the force on the object as it changes a distance. Interestingly, as work is done on an object, potential energy can be stored in that object. For example, if you carry a load up the stairs. Now that load will have potential energy that can be transformed into kinetic energy and so on