To solve this problem we will apply the principles of conservation of energy, for which we have to preserve the initial kinetic energy as elastic potential energy at the end of the movement. If said equality is maintained then we can affirm that,


Here,
m = mass
k = Spring constant
x = Displacement
v = Velocity
Rearranging to find the velocity,



Our values are,



Replacing our values we have,


Therefore the velocity is 
Answer:
a) A = 4.0 m
, b) w = 3.0 rad / s
, c) f = 0.477 Hz
, d) T = 20.94 s
Explanation:
The equation that describes the oscillatory motion is
x = A cos (wt + fi)
In the exercise we are told that the expression is
x = 4.0 cos (3.0 t + 0.10)
let's answer the different questions
a) the amplitude is
A = 4.0 m
b) the frequency or angular velocity
w = 3.0 rad / s
c) angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 3 / 2π
f = 0.477 Hz
d) the period
frequency and period are related
T = 1 / f
T = 1 / 0.477
T = 20.94 s
e) the phase constant
Ф = 0.10 rad
f) velocity is defined by
v = dx / dt
v = - A w sin (wt + Ф)
speed is maximum when sine is + -1
v = A w
v = 4 3
v = 12 m / s
g) the angular velocity is
w² = k / m
k = m w²
k = 1.2 3²
k = 10.8 N / m
h) the total energy of the oscillator is
Em = ½ k A²
Em = ½ 10.8 4²
Em = 43.2 J
i) the potential energy is
Ke = ½ k x²
for t = 0 x = 4 cos (0 + 0.1)
x = 3.98 m
j) kinetic energy
K = ½ m v²
for t = 00.1
²
v = A w sin 0.10
v = 4 3 sin 0.10
v = 1.98 m / s
It will act upon a buoyant force on the magnitude of which is equal to weight of the fluid
Answer:
5900J
Explanation:
Work=Forse*Distance
work = J, Jewls
100*59=5900
Hop this helps and can u think about brainlist
i put a picture on how to find these answers, if u got any more questions im here
<span>b)Determine your horisontal distance from window (ans. 1.5 m)
c)Calc the speed of ball as you catch it (ans: 8.2m/s)
I dont get what 42 m below the horizontal is, can someone give me direction on how to do this?
</span>