Answer:
Given Data:
concentration of sewer Csewer = 1.2 g/L
converting into mg/L = Csewer = 1.2 g/L x 1000 mg/g = 1200 mg/L
flow rate of sewer Qsewer = 2000 L/min
concentration of sewer Cstream = 20 mg/L
flow rate of sewer Qstream = 2m3/s
converting Q into L/min = 2m3/s x 1000 x 60 = 120000 L/min
mass diagram is
Answer:
The table is attached as a picture.
a)
Select VENDOR_CONTACT_LAST_NAME || ', ' || VENDOR_CONTACT_FIRST_NAME "full_name" from VENDORS where VENDOR_CONTACT_LAST_NAME like 'A%' or VENDOR_CONTACT_LAST_NAME like 'E%' order by VENDOR_CONTACT_LAST_NAME,VENDOR_CONTACT_FIRST_NAME;
concatenation operator || is used . Also LIKE is used for pattern matching. full_name is alias for the concatenated column
b) As sample data is not given ,Please test the query for the data given in table
Explanation:
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa