Question:
The water molecules now in your body were once part of a molecular cloud. Only about onemillionth of the mass of a molecular cloud is in the form of water molecules, and the mass density of such a cloud is roughly 2.0×10−21 g/cm^3.
Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.
Answer:
The volume of cloud that has the same density as the amount of water in our body is 1.4×10²⁵ cm³
Explanation:
Here, we have mass density of cloud = 2.0×10⁻²¹ g/cm^3
Density = Mass/Volume
Volume = Mass/Density = If the mass is 40 kg and the body is made up of 70% by mass of water, we have
28 kg water = 28000 g
Therefore the Volume = 28 kg/ 2.0×10⁻²¹ g/cm^3 = 1.4×10¹⁹ m³ = 1.4×10²⁵ cm³.
Therefore, the volume of cloud that has the same density as the amount of water in our body = 1.4×10²⁵ cm³.
13.1 km/s, that is the mean orbital velocity of Jupiter around the sun
A transfer of charge is actually a gross movement of electrons. Charged objects have a normal or "balanced" state. This state is balanced in a sense of positive charges (protons) and negative charges (electrons). When an object has an excess of deficiency of electrons, it will try to regain its balance by releasing or accepting electrons.
Answer: KE = 25 J
Explanation: You must use the formula
KE = 1/2 m v²
to solve this problem.
KE = 1/2 (10 Kg) (5 m/s)
KE = 1/2 (50 kgm/s)
KE = 25 J
Answer:
i hope this helps some
Explanation:
The time-averaged power of a sinusoidal wave is proportional to the square of the amplitude of the wave and the square of the angular frequency of the wave. This is true for most mechanical waves. If either the angular frequency or the amplitude of the wave were doubled, the power would increase by a factor of four.
The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature. Wave speed is calculated by multiplying the wavelength times the frequency (speed = l * f).