Answer:
"Apparent weight during the "plan's turn" is 519.4 N
Explanation:
The "plane’s altitude" is not so important, but the fact that it is constant tells us that the plane moves in a "horizontal plane" and its "normal acceleration" is 
Given that,
v = 420 m/s
R = 11000 m
Substitute the values in the above equation,



It has a horizontal direction. Furthermore, constant speed implies zero tangential acceleration, hence vector a = vector a N. The "apparent weight" of the pilot adds his "true weight" "m" "vector" "g" and the "inertial force""-m" vector a due to plane’s acceleration, vector
In magnitude,





Because vector “a” is horizontal while vector g is vertical. Consequently, the pilot’s apparent weight is vector

Which is quite heavier than his/her true weigh of 519.4 N
Answer:
0,93 atm
Explanation:
For this we will use PV = nRT
P is what we want to find
V = 1 L
n =
= 0,038 moles
R = 0,082 
T = 25°C = 298,15 K
P * 1 = 0,038 *0,082 * 298,15
P = 0,93 atm
Both move with constant speed
A higher temperature, stiffer materials, and less dense materials increase the speed of sound.
I think its friction and gravity change the motion hope this helps :)