Answer : The value of
for
is
.
Solution : Given,
Solubility of
in water = 
The barium carbonate is insoluble in water, that means when we are adding water then the result is the formation of an equilibrium reaction between the dissolved ions and undissolved solid.
The equilibrium equation is,

Initially - 0 0
At equilibrium - s s
The Solubility product will be equal to,
![K_{sp}=[Ba^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BBa%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)

![[Ba^{2+}]=[CO^{2-}_3]=s=4.4\times 10^{-5}mole/L](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5BCO%5E%7B2-%7D_3%5D%3Ds%3D4.4%5Ctimes%2010%5E%7B-5%7Dmole%2FL)
Now put all the given values in this expression, we get the value of solubility constant.

Therefore, the value of
for
is
.
The masses can be found by substractions:
- Mass of CaSO₄.H2O (hydrate):
16.05 g - 13.56 g = 2.49 g
15.07 g - 13.56 g = 1.51 g
- The mass of water is equal to the difference between the mass of the hydrate and the mass of the anhydrate:
2.49 g - 1.51 g = 0.98 g
- The percent of water is found by the formula:
massWater ÷ massHydrate * 100%
0.98 g ÷ 2.49 g * 100% = 39.36%
- The mole of water is calculated using water's molecular weight (18g/mol):
0.98 g ÷ 18 g/mol = 0.054 mol water
- A similar procedure is made for the mole of salt (CaSO₄ = 136.14 g/mol)
1.51 g ÷ 136.14 g/mol = 0.011 mol CaSO₄
- The ratio of mole of water to mole of anhydrate is:
0.054 mol water / 0.011 mol CaSO₄ = 0.49
In other words the molecular formula for the hydrate salt is CaSO₄·0.5H₂O
Answer see because there is a lack of potassium peanuts and walnuts also help the gravitational pull moons rocks different one but because of this energy conversion is the after effect of the camera being shot
Answer:
D.
Explanation:
Adding more gas particles to a set volume will increase the number of collisions, thus increasing collision force and pressure.