Answer:
The weight lifter would not get past this sticking point.
Explanation:
Generally torque applied on the weight is mathematically represented as
T = F z
To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm
for z the perpendicular distance
So Elbow Torque is 

To obtain the torque required we substitute 300 N for F and 30cm 
So the Required Torque is 

Now since
it mean that the weight lifter would not get past this sticking point
Answer:She would need to first know the weight of the sculpture and what she is going to move it with then she will need to use newton's second law to calculate the amount of force needed to move it
Explanation: I just did the assignment on edgunity
Answer:

Explanation:
Speed of light is the product of its wavelength and frequency, expressed as
S=fw
Where s represent speed, f is frequency while w is wavelength
Making f the subject of the formula then
f=s/w
Substituting 2.99x10^8 m/s for s and 3.012x10^-12 m for w then

Therefore, the frequency equals to 
Answer:
<em>2.753*10^-11N</em>
Explanation:
According to Newton's law of gravitation, the force between the masses is expressed as;
F = GMm/d²
M and m are the distances
d is the distance between the masses
Given
M = 3.71 x 10 kg
m = 1.88 x 10^4 kg
d = 1300m
G = 6.67 x 10-11 Nm²/kg
Substitute into the formula
F = 6.67 x 10-11* (3.71 x 10)*(1.88 x 10^4)/1300²
F = 46.52*10^(-6)/1.69 * 10^6
F = 27.53 * 10^{-6-6}
F = 27.53*10^{-12}
F = 2.753*10^-11
<em>Hence the gravitational force between the asteroid is 2.753*10^-11N</em>
<em></em>