1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
10

Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not know the spring constant, but yo

u have two reference weights 1 kg and 2 kg to calibrate your setup. You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured 1.1 Hz, for the 2 kg weight you measured 0.8 Hz. a) Find k (spring constant) and c (damping constant). Find a formula for the mass in terms of the frequency in Hz. Note that there may be more than one possible mass for a given frequency. b) For an unknown object you measured 0.2 Hz, what is the mass of the object? Suppose that you know that the mass of the unknown object is more than a kilogram.
Physics
1 answer:
gtnhenbr [62]3 years ago
8 0

Answer:

a) k = 95.54 N / m,   c =   19.55 , b)      m₃ = 0.9078 kg

Explanation:

In a simple harmonic movement with friction, we can assume that this is provided by the speed

          fr = -c v

when solving the system the angular value remains

          w² = w₀² + (c / 2m)²

They give two conditions

1) m₁ = 1 kg

     f₁ = 1.1 Hz

the angular velocity is related to frequency

         w = 2π f₁

Let's find the angular velocity without friction is

         w₂ = k / m₁

we substitute

        (2π f₁)² = k / m₁ + (c / 2m₁)²

2) m₂ = 2 kg

    f₂ = 0.8 Hz

        (2π f₂)² = k / m₂ + (c / 2m₂)²

we have a system of two equations with two unknowns, so we can solve it

we solve (c / 2m)² is we equalize the expression

           (2π f₁)² - k / m₁ = (2π f₂²) 2 - k / m₁

           k (1 / m₂ - 1 / m₁) = 4π² (f₂² - f₁²)

           k = 4π² (f₂² -f₁²) / (1 / m₂ - 1 / m₁)

a) Let's calculate

           k = 4 π² (0.8² -1.1²) / (½ -1/1)

           k = 39.4784 (1.21) / (-0.5)

           k = 95.54 N / m

now we can find the constant of friction

              (2π f₁) 2 = k / m₁ + (c / 2m₁)²

           c2 = ((2π f₁)² - k / m₁) 4m₁²

           c2 = (4ππ² f₁² - k / m₁) 4 m₁²

let's calculate

           c² = (4π² 1,1² - 95,54 / 1) 4 1²

           c² = (47.768885 - 95.54) 8

           c² = -382.1689

           c =   19.55    

b) f₃ = 0.2 Hz

   m₃ =?

              (2πf₃)² = k / m₃ + (c / 2m₃) 2

we substitute the values

              (4π² 0.2²) = 95.54 / m₃ + 382.1689 2/4 m₃²

              1.579 = 95.54 / m₃ + 95.542225 / m₃²

let's call

              x = 1 / m₃

              x² = 1 / m₃²

- 1.579 + 95.54 x + 95.542225 x² = 0

              60.5080 x² + 60.5080 x -1 = 0

                x² + x - 1.65 10⁻² = 0

                  x = [1 ±√ (1- 4 (-1.65 10⁻²)] / 2

                  x = [1 ± 1.03] / 2

                  x₁ = 1.015 kg

                  x₂ = -0.015 kg

Since the mass must be positive we eliminate the second results

                  x₁ = 1 / m₃

                 m₃ = 1 / x₁

                  m₃ = 1 / 1.1015

             

You might be interested in
(a) Consider the initial-value problem dA/dt = kA, A(0) = A0 as the model for the decay of a radioactive substance. Show that, i
murzikaleks [220]

Answer:

a) t = -\frac{ln(2)}{k}

b) See the proof below

A(t) = A_o 2^{-\frac{t}{T}}

c) t = 3T \frac{ln(2)}{ln(2)}= 3T

Explanation:

Part a

For this case we have the following differential equation:

\frac{dA}{dt}= kA

With the initial condition A(0) = A_o

We can rewrite the differential equation like this:

\frac{dA}{A} =k dt

And if we integrate both sides we got:

ln |A|= kt + c_1

Where c_1 is a constant. If we apply exponential for both sides we got:

A = e^{kt} e^c = C e^{kt}

Using the initial condition A(0) = A_o we got:

A_o = C

So then our solution for the differential equation is given by:

A(t) = A_o e^{kt}

For the half life we know that we need to find the value of t for where we have A(t) = \frac{1}{2} A_o if we use this condition we have:

\frac{1}{2} A_o = A_o e^{kt}

\frac{1}{2} = e^{kt}

Applying natural log we have this:

ln (\frac{1}{2}) = kt

And then the value of t would be:

t = \frac{ln (1/2)}{k}

And using the fact that ln(1/2) = -ln(2) we have this:

t = -\frac{ln(2)}{k}

Part b

For this case we need to show that the solution on part a can be written as:

A(t) = A_o 2^{-t/T}

For this case we have the following model:

A(t) = A_o e^{kt}

If we replace the value of k obtained from part a we got:

k = -\frac{ln(2)}{T}

A(t) = A_o e^{-\frac{ln(2)}{T} t}

And we can rewrite this expression like this:

A(t) = A_o e^{ln(2) (-\frac{t}{T})}

And we can cancel the exponential with the natural log and we have this:

A(t) = A_o 2^{-\frac{t}{T}}

Part c

For this case we want to find the value of t when we have remaining \frac{A_o}{8}

So we can use the following equation:

\frac{A_o}{8}= A_o 2^{-\frac{t}{T}}

Simplifying we got:

\frac{1}{8} = 2^{-\frac{t}{T}}

We can apply natural log on both sides and we got:

ln(\frac{1}{8}) = -\frac{t}{T} ln(2)

And if we solve for t we got:

t = T \frac{ln(8)}{ln(2)}

We can rewrite this expression like this:

t = T \frac{ln(2^3)}{ln(2)}

Using properties of natural logs we got:

t = 3T \frac{ln(2)}{ln(2)}= 3T

8 0
3 years ago
Explain the main function of components of blood.
olga55 [171]

responsible for carrying oxygen and carbon dioxide...

8 0
2 years ago
Describe the main distinguishing features of spiral, elliptical, and irregular galaxies.
hram777 [196]

Answer:

Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.

irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.

5 0
3 years ago
What is the correct order of the steps in the scientific method​
stira [4]
<h2><em>what is the correct order of the steps in the scientific </em><em>method</em></h2>

  • <em>Make a hypothesis, test the hypothesis, analyze the results, ask a question, draw conclusions, communicate results.</em>

<em>hope</em><em> </em><em>it</em><em> helps</em>

6 0
2 years ago
Explain how water changes state using physical changes.
Marat540 [252]

Answer:

Explanation:

Gbuu g by. Out vvuitguvvigvvvug. It uby

6 0
3 years ago
Read 2 more answers
Other questions:
  • How many objects to Newton’s first and second laws deal with
    15·1 answer
  • An fm radio station broadcasts at a frequency of 97 mhz . what inductance should be paired with a 7.0 pf capacitor to build a re
    10·1 answer
  • Si se suelta una moneda desde lo alto de una casa, su velocidad inicial es <br> 4 puntos
    13·1 answer
  • Which of the following is example of magnitude in a specific direction
    5·1 answer
  • If a 10. m3 volume of air (acting as an ideal gas) is at a pressure of 760 mm and a temperature of 27 degrees Celsius is taken t
    9·1 answer
  • A man attempts to pick up his suitcase of weight ws by pulling straight up on the handle.(Figure 1) However, he is unable to lif
    9·2 answers
  • Which of the following is not an example of units for expressing pressure?
    10·1 answer
  • What other issues, besides addiction, might go along with overuse of phones?
    9·1 answer
  • If an object had a negative velocity, then it must be traveling<br>North<br>Up<br>East<br>South​
    12·1 answer
  • The highest freefall jump on record is from a height of almost 38,000 m. At this height, the acceleration of gravity is slightly
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!