A motor spins upward the flywheel with a persistent torque
of 50N⋅m.
What time does it take the flywheel to get to the top speed?
From the equation:
Tj = J*dω/dt
you can get the two equations:
Δt1= J1*Δω/Tj = 240*125.66/50 = 603.17 sec
Δt2= J2*Δω/Tj = 120*125.66/50 = 301.58 sec
Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
The correct answer that would best complete the given statement above would be RENT CONTROL. The rent control is the highest amount that a landlord or a property owner can charge for a rent. Rent control is established by the government that gives the maximum amount as to how much a landlord can charge the tenant. Hope this answer helps.
22N to the right and 13N to the left
Forces are in opposite directions so you subtract the bigger force from the smaller force
Magnitude of force= 22N -13N
= 9N
net force direction is to the right
Answer:
Average speed = 0.0075 m/s
Average velocity = 0.0025 m/s along forward direction
Explanation:
Speed is the ratio of distance and time and velocity is the ratio of displacement and time.
Distance traveled = 10 + 5 = 15 cm = 0.15 m
Displacement = 10 - 5 = 5 cm = 0.05 m
Time = 20 seconds

Average speed = 0.0075 m/s
Average velocity = 0.0025 m/s along forward direction