Molar mass of LiBr (mm )= 86.845 g/mol
Molarity ( M ) = 4 M
Mass of solute ( m ) = 100 g
Volume ( V ) = in liters ?
V = m / mm * M
V = 100 / 86.845 * 4
V = 100 / 347.38
V = 0.2875 L
hope this helps!.
Answer:
Boiling point for the solution is 100.237°C
Explanation:
We must apply colligative property of boiling point elevation
T° boiling solution - T° boiling pure solvent = Kb . m
m = molalilty (a given data)
Kb = Ebulloscopic constant (a given data)
We know that water boils at 100°C so let's replace the information in the formula.
T° boiling solution - 100°C = 0.512 °C/m . 0.464 m
T° boiliing solution = 0.512 °C/m . 0.464 m + 100°C → 100.237 °C
Answer:
The element is strontium and the number of neutrons it have is 51.
Explanation:
Based on the given information, the ionic compound is,
XCl₂ ⇔ X₂⁺ + 2Cl⁻
X2+ is the ion of the mentioned element
As mentioned in the given question, the number of electrons of the element X is 36 and as seen from the reaction the charge present on the ion is +2. Now the atomic number will be,
No. of electrons = atomic number - charge
36 = atomic number - 2
Atomic number = 38
Based on the periodic table, the atomic number 38 is for strontium element, and the sign of strontium is Sr. Hence, the element X is Sr.
Now based on the given information, the mass number of the element is 89. Now the no. of neutrons will be,
No. of neutrons = mass number - atomic number
= 89 - 38
= 51 neutrons.
Answer: thermal conductivity
Explanation:
"The Solar electricity source of energy comes from the sun’s rays. It is more often in the form of a panel known as the solar panel. It has a photovoltaic system that generates and supplies energy in commercial and residential areas. Even though numerous countries are using this type of electricity to save electric-induced power, it is not used for a number of reasons. One is that 1 panel with a size of 6 by 10 solar cells is expensive. There are countries who cannot afford to buy them. Two, it requires a larger area to place the panel. Three, the efficiency is low. The smaller the panel is, the lower its efficiency and therefore produces lesser power to generate a specific area."