1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lana71 [14]
3 years ago
5

During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of the car corresponds to a positive directio

n for the rotation of the tires (and that they do not slip on the pavement). Randomized Variables at = 6.2 m/s2 r = 0.275 m ω0 = 93 rad/s
a. What is the angular acceleration of its tires in rad/s2, assuming they have a radius of 0.275 m and do not slip on the pavement?
b. How many revolutions do the tires make before coming to rest, given their initial angular velocity is 93 rad/s ?
c. How long does the car take to stop completely in seconds?
d. What distance does the car travel in this time in meters?
e. What was the car’s initial speed in m/s?
Physics
1 answer:
ch4aika [34]3 years ago
4 0

Answer:

a) -22.5 rad/s^2

b) 30.6 revolutions

c) 4.13 s

d) 52.9 m

e) 25.6 m/s

Explanation:

a)

The relationship between linear acceleration and angular acceleration for an object in circular motion is given by

a=\alpha r

where

a is the linear acceleration

\alpha is the angular acceleration

r is the radius of the motion of the object

For the tires of the  car in this problem, we have:

a=-6.2 m/s^2 is the linear acceleration (the car is slowing  down, so it is a deceleration, therefore the negative sign)

r = 0.275 m is the radius of the tires

Solving for \alpha, we find the angular acceleration:

\alpha = \frac{a}{r}=\frac{-6.2}{0.275}=-22.5 rad/s^2

b)

To solve this part of the problem, we can use the suvat equation for the rotational motion, in particular:

\omega^2 - \omega_0^2 = 2\alpha \theta

where:

\omega is the final angular velocity

\omega_0 is the initial angular velocity

\alpha is the angular acceleration

\theta is the angular displacement

Here we have:

\omega=0 (the tires come to a stop)

\omega_0 = 93 rad/s

\alpha = -22.5 rad/s^2

Solving for \theta, we find the angular displacement:

\theta=\frac{\omega^2-\omega_0^2}{2\alpha}=\frac{0^2-(93)^2}{2(-22.5)}=192.2 rad

And since 1 revolution = 2\pi rad,

\theta=\frac{192.2}{2\pi}=30.6 rev

c)

To solve this part, we can use another suvat equation:

\omega=\omega_0 + \alpha t

where in this case, we have:

\omega=0 is the final angular velocity, since the tires come to a stop

\omega_0 = 93 rad/s is the initial angular velocity

\alpha=-22.5 rad/s^2 is the angular acceleration

t is the time

Solving for t, we can find the time required for the tires (and the car) to sopt:

t=\frac{\omega-\omega_0}{\alpha}=\frac{0-93}{-22.5}=4.13 s

d)

The car travels with a uniformly accelerated motion, so we can find the distance it covers by using the suvat equations for linear motion:

s=vt-\frac{1}{2}at^2

where:

v = 0 is the final velocity of the car (zero since it comes to a stop)

t = 4.13 s is the time taken for the car to stop

a=-6.2 m/s^2 is the deceleration for the car

s is the distance covered during this motion

Therefore, substituting all values and calculating s, we find the distance covered:

s=0-\frac{1}{2}(-6.2)(4.13)^2=52.9 m

e)

The relationship between angular velocity and linear velocity for a rotational motion is given by

v=\omega r

where

v is the linear velocity

\omega is the angular speed

r is the radius of the circular motion

In this problem:

\omega_0 = 93 rad/s is the initial angular speed of the tires

r = 0.275 m is the radius of the tires

Therefore, the initial velocity of the car is:

u=\omega_0 r = (93)(0.275)=25.6 m/s is the initial velocity of the car

You might be interested in
Consider this situation: Four ropes, each attached to the end
faust18 [17]

The forces acting on the elevator are:

Gravity force

Tension force

Air resistance

Explanation:

Let's go through each of the forces listed and see which ones are acting on the elevator.

  • Normal force: NO. The normal force is a force exerted by a surface whenever there is another object "pushing" on it. For instance, when a box is at rest on a table, the box is "pushing" on the table (due to its weight), and the table "pushes back" on the box, upward, in order to balance its weight: this is the normal force. In this case, the elevator is lifted, so it is not pushing on anything, therefore there is no normal force.
  • Gravity force: YES. The force of gravity acts on every object located in the gravitational field of the Earth; it pulls downward, and its magnitude is mg, where m is the mass of the object and g is the acceleration of gravity.
  • Applied force: NO. Here there is no applied force, since there is nobody "pushing" or "pulling" the elevator.
  • Friction force: NO. As we are considering the forces on the elevator, and the elevator is not sliding against any surfaces, there is no force of friction. (The force of friction acts whenever there are two surfaces sliding against each other, which is not the case here)
  • Tension force: YES. The tension force is the force exerted by a rope or a string when pulling an object. In this case, there are four ropes pulling the elevator, therefore there are 4 forces of tension acting on the elevator, upward.
  • Air resistance: YES. As the elevator is moving through the air, the interaction between the molecules of air with the surface of the elevator produces a force (called air resistance) that "resists" the motion of the elevator, therefore pushing downward. However, the magnitude of this force is negligible in this case.

Learn more about forces:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

5 0
3 years ago
Four equal masses m are so small they can be treated as points, and they are equally spaced along a long, stiff wire of neglible
anyanavicka [17]

Answer: 5m/L^2

Explanation:

Inertial I = mr^2 where r = distance from axis of rotation, while m is the mass of the object.

I = 2[m(1L/2)^2] + 2[m(3L/2)^2] = 2m×. 25/L^2+ 3m×2. 25/L^2= 0. 5m/l^2 +4. 5m/l^2

= 5m/l^2.

8 0
3 years ago
Se coloca agua en un recipiente de aluminio y se pone a calentar en una estufa que le suministra 230 kj, lo cual hace que la tem
tensa zangetsu [6.8K]

Answer:

32 °C.

Explanation:

Hola.

En este caso, debemos entender que la relación entre el calor y la temperatura viene dada por:

Q=mCp\Delta T

De este modo, dado que estamos estudiando la misma sustancia (agua) con masa constante, la relación calor-temperatura es lineal y directamente proporcional, por tal razón, si se duplica el calor suministrado, la temperatura también será duplicada, de modo que:

\Delta T_{nuevo}=2*16\°C\\\\\Delta T_{nuevo}=32\°C

¡Saludos!

3 0
3 years ago
The spring to launch a pinball in a pinball machine is compressed 25 cm and has a spring constant of 140 N/m.
mote1985 [20]

Answer:

I think it is 5.6. This is my answer

8 0
3 years ago
The cardiovascular system consists of
guapka [62]
Consists of A. good luck
3 0
3 years ago
Other questions:
  • What is the ratio of magnitudes of their angular velocities, ω1/ω2? express your answer in terms of the variables r1 and r2?
    7·1 answer
  • What does the term “periodic” mean when describing motion
    7·2 answers
  • Which statement best describes what happens when a sound source is moving? As the sound source approaches the observer, the pitc
    9·2 answers
  • How will a positive and a negative charge react to each other?
    14·1 answer
  • In a movie, Tarzan evades his captors by hiding under water for many minutes while breathing through a long, thin reed. Assume t
    12·1 answer
  • An oceanic depth-sounding vessel surveys the ocean bottom with ultrasonic waves that travel 1530 m/s in seawater. How deep is th
    15·1 answer
  • The primary coil of a transformer has N1 = 275 turns, and its secondary coil has N2 = 2,200 turns. If the input voltage across t
    8·1 answer
  • Waves do NOT carry.<br><br> A)Weight<br> B)Matter<br> C)Energy<br> D)Color<br> (Choose one)
    12·1 answer
  • Which graph would you use to show the percentage of cookies sold by each
    13·1 answer
  • what is the electrical potential at the surface of gold nucleus? The radius of a gold atom is 6.6*10​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!