Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .
Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
Answer:A
Explanation: number that shows the total atomic mass of the substance
Solve the following word problems.
1. The ratio of red marbles and blue marbles that Carlo has is 8: 3. When he
exchanged 35 red marbles for 20 blue marbles from his brother, he was left with
equal number of red and blue marbles.
How many red and blue marbles did he have at the beginning
How many red and blue marbles did he have now