Answer:
v = 1.98*10^8 m/s
Explanation:
Given:
- Rod at rest in S' frame
- makes an angle Q = sin^-1 (3/5) in reference frame S'
- makes an angle of 45 degree in frame S
Find:
What must be the value of v if as measured in S the rod is at a 45 degree)
Solution:
- In reference frame S'
                 x' component = L*cos(Q)
                 y' component = L*sin(Q)
- Apply length contraction to convert projected S' frame lengths to S frame:
                 x component = L*cos(Q) / γ           (Length contraction)
                 y component = L*sin(Q)                  (No motion)
- If the rod is at angle 45° to the x axis, as measured in F, then the x and y components must be  equal:
                 L*sin(Q) = L*cos(Q) / γ    
Given:       γ = c / sqrt(c^2 - v^2)
                  c / sqrt(c^2 - v^2) = cot(Q)
                  1 - (v/c)^2 = tan(Q)
                  v = c*sqrt( 1 - tan^2 (Q))
For the case when Q = sin^-1 (3/5)::
                  tan(Q) = 3/4
                  v = c*sqrt( 1 - (3/4)^2)
                  v = c*sqrt(7) / 4 = 1.98*10^8 m/s