The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Approximately
(approximately
) assuming that the magnetic field and the wire are both horizontal.
Explanation:
Let
denote the angle between the wire and the magnetic field.
Let
denote the magnitude of the magnetic field.
Let
denote the length of the wire.
Let
denote the current in this wire.
The magnetic force on the wire would be:
.
Because of the
term, the magnetic force on the wire is maximized when the wire is perpendicular to the magnetic field (such that the angle between them is
.)
In this question:
(or, equivalently,
radians, if the calculator is in radian mode.)
.
.
.
Rearrange the equation
to find an expression for
, the current in this wire.
.
Answer:
The magnitude of the frictional force is 
Explanation:
From the question we are told that
The force exerted on the box is 
Generally for the box to remain at rest then it means that the frictional force is greater than or equal to the force applied to move it i.e

=> 
Answer:
Speed is a "scalar" quantity
(C) is the correct answer
An object could travel at 10 m/s to some point and then return to the origin at 10 m/s for an average speed of 10 m/s, however it's displacement over that time would be zero for a net velocity of zero.