According to the net force, the acceleration of the book is 16.47 m/s².
We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as
∑F = m . a
where F is force, m is mass and a is acceleration
From the question above, we know that
m = 3 kg
g = 9.8 m/s²
F1 = 20 N
Find the net force
∑F = F1 + W
∑F = 20 + m . g
∑F = 20 + 3 . 9.8
∑F = 20 + 29.4
∑F = 49.4 N
Find the acceleration
∑F = m . a
49.4 = 3 . a
a = 16.47 m/s²
Find more on force at: brainly.com/question/25239010
#SPJ4
Answer:

Explanation:
Btu of British thermal unit is a unit of heat. The relation between btu/year and watts is given by :

So,
is equal to 11 kW. Hence, the correct option is (d).
Answer:
915 Hz
Explanation:
The observed frequency from a sound source is given as
f₀ = f [(v + v₀)/(v+vₛ)]
where
f₀ = observed frequency of the sound by the observer = ?
f = actual frequency of the sound wave = 983 Hz
v = actual velocity of the sound waves = 343 m/s
vₛ = velocity of the source of the sound waves = 55.9 m/s
v₀ = velocity of the observer = 28.4 m/s
f₀ = 983 [(343+28.4)/(343+55.9)]
f₀ = 915.2 Hz = 915 Hz
Answer:
a = - 1.987 × 10⁶ ft/s²
t = 6.84 × 10⁻⁴ s
Explanation:
v₀ = 910 ft/s
x = 5 in.
relation v = v₀ - k x
v = 0 as body comes to rest
0 = 900 - 5k/12
k = 2184 s⁻¹
acceleration

where
(A) a = -k × v
at v= 910 ft/s
a = - 1.987 × 10⁶ ft/s²
(B) at x = 3.9 in.
v = 910 - 3.9(2184)/12
v = 200.2 m/s




t = 6.84 × 10⁻⁴ s